Skip to main content

Microarray Method for the Rapid Detection of Glycosaminoglycan–Protein Interactions

  • Protocol
  • First Online:
Carbohydrate Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 808))

Abstract

Glycosaminoglycans (GAGs) perform numerous vital functions within the body. As major components of the extracellular matrix, these polysaccharides participate in a diverse array of cell-signaling events. We have developed a simple microarray assay for the evaluation of protein binding to various GAG subclasses. In a single experiment, the binding to all members of the GAG family can be rapidly determined, giving insight into the relative specificity of the interactions and the importance of specific sulfation motifs. The arrays are facile to prepare from commercially available materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laurent, T. C., Laurent, U. B., and Fraser, J. R. (1996) The structure and function of hyaluronan: an overview, Immunol. Cell Biol. 74, A1–A7.

    Article  PubMed  CAS  Google Scholar 

  2. Iozzo, R. V., and Antonio, J. D. S. (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena, J. Clin. Invest. 108, 349–355.

    PubMed  CAS  Google Scholar 

  3. Holt, C. E., and Dickson, B. J. (2005) Sugar codes for axons?, Neuron 46, 169–172.

    Article  PubMed  CAS  Google Scholar 

  4. Thammawat, S., Sadlon, T. A., Hallsworth, P. G., and Gordon, D. L. (2008) Role of cellular glycosaminoglycans and charged regions of viral G protein in human metapneumovirus infection, J. Virol. 82, 11767–11774.

    Article  PubMed  CAS  Google Scholar 

  5. Galtrey, C. M., and Fawcett, J. W. (2007) The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system, Brain Res. Rev. 54, 1–18.

    Article  PubMed  CAS  Google Scholar 

  6. Sugahara, K., Mikami, T., Uyama, T., Mizuguchi, S., Nomura, K., and Kitagawa, H. (2003) Recent advances in the structural biology of chondroitin sulfate and dermatin sulfate, Curr. Opin. Struct. Biol. 13, 612–620.

    Article  PubMed  CAS  Google Scholar 

  7. Lui, D., Shriver, Z., Qi, Y., Venkataraman, G., and Sasisekharan, R. (2002) Dynamic regulation of tumor growth and metasis by heparan sulfate glycosaminoglycans, Semin. Thromb. Hemost. 28, 67–78.

    Article  Google Scholar 

  8. Tímár, J., Lapis, K., Dudás, J., Sebestyén, A., Kopper, L., and Kovalszky, I. (2002) Proteo­glycans and tumor progression: Janus-faced molecules with contradictory functions in cancer, Semin. Cancer Biol. 12, 173–186.

    Article  PubMed  Google Scholar 

  9. Sanderson, R. D. (2001) Heparan sulfate proteoglycans in invasion and metastasis, Semin. Cell Dev. Biol. 12, 89–98.

    Article  PubMed  CAS  Google Scholar 

  10. Casu, B., Guerrini, M., and Torri, G. (2004) Structural and conformational aspects of the anticoagulant and anti-thrombotic activity of heparin and dermatan sulfate, Curr. Pharm. Des. 10, 939–949.

    Article  PubMed  CAS  Google Scholar 

  11. Fareed, J., Hoppensteadt, D. A., and Bick, R. L. (2000) An update on heparins at the beginning of the new millennium, Semin. Thromb. Hemost. 26, 5–18.

    Article  PubMed  CAS  Google Scholar 

  12. Capila, I., and Linhardt, R. J. (2002) Heparin-protein interactions, Angew. Chem. Int. Ed. 41, 391–412.

    Article  Google Scholar 

  13. Whitelock, J. M., and Iozzo, R. V. (2005) Heparan sulfate: a complex polymer charged with biological activity, Chem. Rev. 105, 2745–2764.

    Article  PubMed  CAS  Google Scholar 

  14. Rubin, J. B., Choi, Y., and Segal, R. A. (2002) Cerebellar proteoglycans regulate sonic hedgehog responses during development, Development 129, 2223–2232.

    PubMed  CAS  Google Scholar 

  15. Taylor, K. R., and Gallo, R. L. (2006) Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation, FASEB J. 20, 9–22.

    Article  PubMed  CAS  Google Scholar 

  16. Sugahara, K., and Mikami, T. (2007) Chondroitin/dermatan sulfate in the central nervous system, Curr. Opin. Struct. Biol. 17, 536–545.

    Article  PubMed  CAS  Google Scholar 

  17. de Paz, J. L., Noti, C., and Seeberger, P. H. (2006) Microarrays of synthetic heparin oligosaccharides, J. Am. Chem. Soc. 128, 2766–2767.

    Article  PubMed  Google Scholar 

  18. Fukui, S., Feizi, T., Galustian, C., Lawson, A. M., and Chai, W. (2002) Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions., Nat. Biotechnol. 20, 1011–1017.

    Article  PubMed  CAS  Google Scholar 

  19. Gama, C. I., Tully, S. E., Sotogaku, N., Clark, P. M., Rawatand, M., Vaidehi, N., Goddard, W. A., Nishi, A., and Hsieh-Wilson, L. C. (2006) Sulfation patterns of glycosaminoglycans encode molecular recognition and activity, Nat. Chem. Biol. 2, 467–473.

    Article  PubMed  CAS  Google Scholar 

  20. Shipp, E. L., and Hsieh-Wilson, L. C. (2007) Profiling the sulfation specificities of glycosaminoglycan interactions with growth factors and chemotactic proteins using microarrays, Chem. Biol. 14, 195–208.

    Article  PubMed  CAS  Google Scholar 

  21. Tully, S. E., Rawat, M., and Hsieh-Wilson, L. C. (2006) Discovery of a TNF-alpha antagonist using chondroitin sulfate microarrays, J. Am. Chem. Soc. 128, 7740–7741.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Igor Antoshechkin, Director of the Millard and Muriel Jacobs Genetics and Genomics Laboratory at the California Institute of Technology, and Dr. Jose Luis Riechmann for assistance with printing the microarrays and Joshua M. Brown, Russell E. Roberson, and Dr. Igor Antoshechkin for critically reading the manuscript. This work was supported by the National Institutes of Health (R01 GM093627).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda C. Hsieh-Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rogers, C.J., Hsieh-Wilson, L.C. (2012). Microarray Method for the Rapid Detection of Glycosaminoglycan–Protein Interactions. In: Chevolot, Y. (eds) Carbohydrate Microarrays. Methods in Molecular Biology, vol 808. Humana Press. https://doi.org/10.1007/978-1-61779-373-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-373-8_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-372-1

  • Online ISBN: 978-1-61779-373-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics