Skip to main content

AAV Capsid Structure and Cell Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 807))

Abstract

The Adeno-associated viruses (AAVs) are not associated with any diseases, and their ability to package non-genomic DNA and to transduce different cell/tissue populations has generated significant interest in understanding their basic biology in efforts to improve their utilization for corrective gene delivery. This includes their capsid structure, cellular tropism and interactions for entry, uncoating, replication, DNA packaging, capsid assembly, and antibody neutralization. The human and nonhuman primate AAVs are clustered into serologically distinct genetic clade and serotype groups, which have distinct cellular/tissue tropisms and transduction efficiencies. These properties are highly dependent upon the AAV capsid amino acid sequence, their capsid structure, and their interactions with host cell factors, including cell surface receptors, co-receptors, signaling molecules, proteins involved in host DNA replication, and host-derived antibodies. This chapter reviews the current structural information on AAV capsids and the capsid viral protein regions playing a role in the cellular interactions conferring an infective phenotype, which are then used to annotate the functional regions of the capsid. Based on the current data, the indication is that the AAVs, like other members of the Parvoviridae and other ssDNA viruses that form a T = 1 capsid, have evolved a multifunctional capsid with conserved core regions as is required for efficient capsid trafficking, capsid assembly, and genome packaging. Disparate surface loop structures confer differential receptor recognition and are involved in antibody recognition. The role of structural regions in capsid uncoating remains to be elucidated.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gao, G., Vandenberghe, L. H., Alvira, M. R., Lu, Y., Calcedo, R., Zhou, X., and Wilson, J. M. (2004) Clades of Adeno-associated viruses are widely disseminated in human tissues, J Virol 78, 6381–6388.

    Article  PubMed  CAS  Google Scholar 

  2. Gao, G. P., Alvira, M. R., Wang, L., Calcedo, R., Johnston, J., and Wilson, J. M. (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy, Proc Natl Acad Sci USA 99, 11854–11859.

    Article  PubMed  CAS  Google Scholar 

  3. Mori, S., Wang, L., Takeuchi, T., and Kanda, T. (2004) Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein, Virology 330, 375–383.

    Article  PubMed  CAS  Google Scholar 

  4. Schmidt, M., Govindasamy, L., Afione, S., Kaludov, N., Agbandje-McKenna, M., and Chiorini, J. A. (2008) Molecular characterization of the heparin-dependent transduction domain on the capsid of a novel adeno-associated virus isolate, AAV(VR-942), J Virol 82, 8911–8916.

    Article  PubMed  CAS  Google Scholar 

  5. Schmidt, M., Voutetakis, A., Afione, S., Zheng, C., Mandikian, D., and Chiorini, J. A. (2008) Adeno-associated virus type 12 (AAV12): a novel AAV serotype with sialic acid- and heparan sulfate proteoglycan-independent transduction activity, J Virol 82, 1399–1406.

    Article  PubMed  CAS  Google Scholar 

  6. Chapman, M. S., and Agbandje-McKenna, M. (2006) Atomic structure if viral particles., in Parvoviruses (Kerr, J. R., Cotmore, S. F., Bloom, M. E., Linden, R. M., and Parrish, C. R., Eds.), pp 107–123, Edward Aenold Ltd. New York, New York.

    Google Scholar 

  7. McLaughlin, S. K., Collis, P., Hermonat, P. L., and Muzyczka, N. (1988) Adeno-associated virus general transduction vectors: analysis of proviral structures, J Virol 62, 1963–1973.

    PubMed  CAS  Google Scholar 

  8. Samulski, R. J., Srivastava, A., Berns, K. I., and Muzyczka, N. (1983) Rescue of adeno-associated virus from recombinant plasmids: gene correction within the terminal repeats of AAV, Cell 33, 135–143.

    Article  PubMed  CAS  Google Scholar 

  9. Senapathy, P., Tratschin, J. D., and Carter, B. J. (1984) Replication of adeno-associated virus DNA. Complementation of naturally occurring rep-mutants by a wild-type genome or an ori-mutant and correction of terminal palindrome deletions, J Mol Biol 179, 1–20.

    PubMed  CAS  Google Scholar 

  10. Samulski, R. J., Chang, L.-S., and Shenk, T. (1987) A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication, J Virol 61, 3096–3101.

    PubMed  CAS  Google Scholar 

  11. Hermonat, P. L., and Muzyczka, N. (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells, Proc Natl Acad Sci USA 81, 6466–6470.

    Article  PubMed  CAS  Google Scholar 

  12. Samulski, R. J., Sally, M., and Muzyczka, N. (1988) Adeno-associated viral vectors., in Cold Spring Harbor, Cold Spring Harbor Laboraory Press, NY., Cold Spring Harbor.

    Google Scholar 

  13. Hauck, B., Chen, L., and Xiao, W. (2003) Generation and characterization of chimeric recombinant AAV vectors, Mol Ther 7, 419–425.

    Article  PubMed  CAS  Google Scholar 

  14. Hauck, B., and Xiao, W. (2003) Characterization of tissue tropism determinants of adeno-associated virus type 1, J Virol 77, 2768–2774.

    Article  PubMed  CAS  Google Scholar 

  15. Hildinger, M., Auricchio, A., Gao, G., Wang, L., Chirmule, N., and Wilson, J. M. (2001) Hybrid vectors based on adeno-associated virus serotypes 2 and 5 for muscle-directed gene transfer, J Virol 75, 6199–6203.

    Article  PubMed  CAS  Google Scholar 

  16. Rabinowitz, J. E., Rolling, F., Li, C., Conrath, H., Xiao, W., Xiao, X., and Samulski, R. J. (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity, J Virol 76, 791–801.

    Article  PubMed  CAS  Google Scholar 

  17. Rabinowitz, J. E., Bowles, D. E., Faust, S. M., Ledford, J. G., Cunningham, S. E., and Samulski, R. J. (2004) Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups, J Virol 78, 4421–4432.

    Article  PubMed  CAS  Google Scholar 

  18. DiMattia, M., Govindasamy, L., Levy, H. C., Gurda-Whitaker, B., Kalina, A., Kohlbrenner, E., Chiorini, J. A., McKenna, R., Muzyczka, N., Zolotukhin, S., and Agbandje-McKenna, M. (2005) Production, purification, crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 5, Acta Crystallogr Sect F Struct Biol Cryst Commun 61, 917–921.

    Article  PubMed  CAS  Google Scholar 

  19. Kaludov, N., Padron, E., Govindasamy, L., McKenna, R., Chiorini, J. A., and Agbandje-McKenna, M. (2003) Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 4, Virology 306, 1–6.

    Article  PubMed  CAS  Google Scholar 

  20. Mitchell, M., Nam, H. J., Carter, A., McCall, A., Rence, C., Bennett, A., Gurda, B., McKenna, R., Porter, M., Sakai, Y., Byrne, B. J., Muzyczka, N., Aslanidi, G., Zolotukhin, S., and Agbandje-McKenna, M. (2009) Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 9, Acta Crystallogr Sect F Struct Biol Cryst Commun 65, 715–718.

    Article  PubMed  CAS  Google Scholar 

  21. Miller, E. B., Gurda-Whitaker, B., Govindasamy, L., McKenna, R., Zolotukhin, S., Muzyczka, N., and Agbandje-McKenna, M. (2006) Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 1, Acta Crystallogr Sect F Struct Biol Cryst Commun 62, 1271–1274.

    Article  PubMed  CAS  Google Scholar 

  22. Quesada, O., Gurda, B., Govindasamy, L., McKenna, R., Kohlbrenner, E., Aslanidi, G., Zolotukhin, S., Muzyczka, N., and Agbandje-McKenna, M. (2007) Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 7, Acta Crystallogr Sect F Struct Biol Cryst Commun 63, 1073–1076.

    Article  PubMed  CAS  Google Scholar 

  23. Lane, M. D., Nam, H. J., Padron, E., Gurda-Whitaker, B., Kohlbrenner, E., Aslanidi, G., Byrne, B., McKenna, R., Muzyczka, N., Zolotukhin, S., and Agbandje-McKenna, M. (2005) Production, purification, crystallization and preliminary X-ray analysis of adeno-associated virus serotype 8, Acta Crystallogr Sect F Struct Biol Cryst Commun 61, 558–561.

    Article  PubMed  CAS  Google Scholar 

  24. Govindasamy, L., Padron, E., McKenna, R., Muzyczka, N., Kaludov, N., Chiorini, J. A., and Agbandje-McKenna, M. (2006) Structurally mapping the diverse phenotype of adeno-associated virus serotype 4, J Virol 80, 11556–11570.

    Article  PubMed  CAS  Google Scholar 

  25. Nam, H. J., Lane, M. D., Padron, E., Gurda, B., McKenna, R., Kohlbrenner, E., Aslanidi, G., Byrne, B., Muzyczka, N., Zolotukhin, S., and Agbandje-McKenna, M. (2007) Structure of adeno-associated virus serotype 8, a gene therapy vector, J Virol 81, 12260–12271.

    Article  PubMed  CAS  Google Scholar 

  26. Xie, Q., Bu, W., Bhatia, S., Hare, J., Somasundaram, T., Azzi, A., and Chapman, M. S. (2002) The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy, Proc Natl Acad Sci U S A 99, 10405–10410.

    Article  PubMed  CAS  Google Scholar 

  27. O’Donnell, J., Taylor, K. A., and Chapman, M. S. (2009) Adeno-associated virus-2 and its primary cellular receptor – Cryo-EM structure of a heparin complex, Virology 385, 434–443.

    Article  PubMed  CAS  Google Scholar 

  28. Lerch, T. F., Xie, Q., Ongley, H. M., Hare, J., and Chapman, M. S. (2009) Twinned crystals of adeno-associated virus serotype 3b prove suitable for structural studies, Acta Crystallogr Sect F Struct Biol Cryst Commun 65, 177–183.

    Article  PubMed  CAS  Google Scholar 

  29. Xie, Q., Ongley, H. M., Hare, J., and Chapman, M. S. (2008) Crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 6, Acta Crystallogr Sect F Struct Biol Cryst Commun 64, 1074–1078.

    Article  PubMed  CAS  Google Scholar 

  30. Padron, E., Bowman, V., Kaludov, N., Govindasamy, L., Levy, H., Nick, P., McKenna, R., Muzyczka, N., Chiorini, J. A., Baker, T. S., and Agbandje-McKenna, M. (2005) Structure of adeno-associated virus type 4, J Virol 79, 5047–5058.

    Article  PubMed  CAS  Google Scholar 

  31. Walters, R. W., Agbandje-McKenna, M., Bowman, V. D., Moninger, T. O., Olson, N. H., Seiler, M., Chiorini, J. A., Baker, T. S., and Zabner, J. (2004) Structure of adeno-associated virus serotype 5, J Virol 78, 3361–3371.

    Article  PubMed  CAS  Google Scholar 

  32. Levy, H. C., Bowman, V. D., Govindasamy, L., McKenna, R., Nash, K., Warrington, K., Chen, W., Muzyczka, N., Yan, X., Baker, T. S., and Agbandje-McKenna, M. (2009) Heparin binding induces conformational changes in Adeno-associated virus serotype 2, J Struct Biol 165, 146–156.

    Article  PubMed  CAS  Google Scholar 

  33. Kronenberg, S., Bottcher, B., von der Lieth, C. W., Bleker, S., and Kleinschmidt, J. A. (2005) A conformational change in the adeno-associated virus type 2 capsid leads to the exposure of hidden VP1 N termini, J Virol 79, 5296–5303.

    Article  PubMed  CAS  Google Scholar 

  34. Kronenberg, S., Kleinschmidt, J. A., and Bottcher, B. (2001) Electron cryo-microscopy and image reconstruction of adeno-associated virus type 2 empty capsids, EMBO Rep 2, 997–1002.

    Article  PubMed  CAS  Google Scholar 

  35. Lerch, T. F., Xie, Q., and Chapman, M. S. (2010) The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion, Virology, 403, 26–36.

    Article  PubMed  CAS  Google Scholar 

  36. Robert, N. G., Govindasamy, L., Gurda, B. L., McKenna, R., Kozyreva, O. G., Samulski, R. J., Parent, K. N., Baker, T. S., and Agbandje-McKenna, M. (2010) Structural Characterization of the Dual Glycan Binding Adeno-Associated Virus Serotype 6, J Virol. 84, 12945–12957.

    Article  PubMed  CAS  Google Scholar 

  37. Bleker, S., Sonntag, F., and Kleinschmidt, J. A. (2005) Mutational analysis of narrow pores at the fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in genome packaging and activation of phospholipase A2 activity, J Virol 79, 2528–2540.

    Article  PubMed  CAS  Google Scholar 

  38. Gerlach, B., Kleinschmidt, J. A., Böttcher, B. (2011) Conformational changes in adeno-associated virus type 1 induced by genome packaging, JMB, 409(3), 427–438 and unpublished results.

    Article  PubMed  CAS  Google Scholar 

  39. Kaufmann, B., Simpson, A. A., and Rossmann, M. G. (2004) The structure of human parvovirus B19, Proc Natl Acad Sci USA 101, 11628–11633.

    Article  PubMed  CAS  Google Scholar 

  40. Farr, G. A., Cotmore, S. F., and Tattersall, P. (2006) VP2 cleavage and the leucine ring at the base of the fivefold cylinder control pH-dependent externalization of both the VP1 N terminus and the genome of minute virus of mice, J Virol 80, 161–171.

    Article  PubMed  CAS  Google Scholar 

  41. Farr, G. A., and Tattersall, P. (2004) A conserved leucine that constricts the pore through the capsid fivefold cylinder plays a central role in parvoviral infection, Virology 323, 243–256.

    Article  PubMed  CAS  Google Scholar 

  42. Farr, G. A., Zhang, L. G., and Tattersall, P. (2005) Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry, Proc Natl Acad Sci U S A 102, 17148–17153.

    Article  PubMed  CAS  Google Scholar 

  43. Sonntag, F., Bleker, S., Leuchs, B., Fischer, R., and Kleinschmidt, J. A. (2006) Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus, J Virol 80, 11040–11054.

    Article  PubMed  CAS  Google Scholar 

  44. Mani, B., Baltzer, C., Valle, N., Almendral, J. M., Kempf, C., and Ros, C. (2006) Low pH-dependent endosomal processing of the incoming parvovirus minute virus of mice virion leads to externalization of the VP1 N-terminal sequence (N-VP1), N-VP2 cleavage, and uncoating of the full-length genome, J Virol 80, 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  45. Girod, A., Wobus, C. E., Zadori, Z., Ried, M., Leike, K., Tijssen, P., Kleinschmidt, J. A., and Hallek, M. (2002) The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity, J Gen Virol 83, 973–978.

    PubMed  CAS  Google Scholar 

  46. Zadori, Z., Szelei, J., Lacoste, M. C., Li, Y., Gariepy, S., Raymond, P., Allaire, M., Nabi, I. R., and Tijssen, P. (2001) A viral phospholipase A2 is required for parvovirus infectivity, Dev Cell 1, 291–302.

    Article  PubMed  CAS  Google Scholar 

  47. Kontou, M., Govindasamy, L., Nam, H. J., Bryant, N., Llamas-Saiz, A. L., Foces-Foces, C., Hernando, E., Rubio, M. P., McKenna, R., Almendral, J. M., and Agbandje-McKenna, M. (2005) Structural determinants of tissue tropism and in vivo pathogenicity for the parvovirus minute virus of mice, J Virol 79, 10931–10943.

    Article  PubMed  CAS  Google Scholar 

  48. Bennett, A., McKenna, R., and Agbandje-McKenna, M. (2008) A comparative analysis of the structural architecture of ssDNA viruses, Computational and Mathematical Methods in Medicine Vol. 9, 183–196.

    Article  Google Scholar 

  49. Summerford, C., and Samulski, R. J. (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions, J Virol 72, 1438–1445.

    PubMed  CAS  Google Scholar 

  50. Chen, S., Kapturczak, M., Loiler, S. A., Zolotukhin, S., Glushakova, O. Y., Madsen, K. M., Samulski, R. J., Hauswirth, W. W., Campbell-Thompson, M., Berns, K. I., Flotte, T. R., Atkinson, M. A., Tisher, C. C., and Agarwal, A. (2005) Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors, Hum Gene Ther 16, 235–247.

    Article  PubMed  CAS  Google Scholar 

  51. Wu, Z., Miller, E., Agbandje-McKenna, M., and Samulski, R. J. (2006) Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6, J Virol 80, 9093–9103.

    Article  PubMed  CAS  Google Scholar 

  52. Kaludov, N., Brown, K. E., Walters, R. W., Zabner, J., and Chiorini, J. A. (2001) Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity, J Virol 75, 6884–6893.

    Article  PubMed  CAS  Google Scholar 

  53. Walters, R. W., Yi, S. M., Keshavjee, S., Brown, K. E., Welsh, M. J., Chiorini, J. A., and Zabner, J. (2001) Binding of adeno-­associated virus type 5 to 2,3-linked sialic acid is required for gene transfer, J Biol Chem 276, 20610–20616.

    Article  PubMed  CAS  Google Scholar 

  54. Di Pasquale, G., Davidson, B. L., Stein, C. S., Martins, I., Scudiero, D., Monks, A., and Chiorini, J. A. (2003) Identification of PDGFR as a receptor for AAV-5 transduction, Nat Med 9, 1306–1312.

    Article  PubMed  CAS  Google Scholar 

  55. Wu, Z., Asokan, A., Grieger, J. C., Govindasamy, L., Agbandje-McKenna, M., and Samulski, R. J. (2006) Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-­associated virus serotypes, J Virol 80, 11393–11397.

    Article  PubMed  CAS  Google Scholar 

  56. Shen, S., Brown, S. M., Randell, S. H., Asokan, A. Terminal N-Linked Galactose Is the Primary Receptor for Adeno-associated Virus 9. J Biological Chemistry, 286, 13532–13540.

    Article  PubMed  CAS  Google Scholar 

  57. Bell, C. L., Vandenberghe, L. H., Bell, P., Limberis, M. P., Gao, G.-P., Vliet, K. V., Agbandje-McKenna, M., and Wilson, J. M. (2011) The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice, J Clin Invest, 121(6), 2427–2435.

    Article  PubMed  CAS  Google Scholar 

  58. Agbandje-McKenna, M., and Chapman, M. S. (2006) Correlating structure with function in the viral capsid, in Parvoviruses (Kerr, J. R., Cotmore, S. F., Bloom, M. E., Linden, R. M., and Parrish, C. R., Eds.), Edward Arnold, New York, New York.

    Google Scholar 

  59. Lopez-Bueno, A., Rubio, M. P., Bryant, N., McKenna, R., Agbandje-McKenna, M., and Almendral, J. M. (2006) Host-selected amino acid changes at the sialic acid binding pocket of the parvovirus capsid modulate cell binding affinity and determine virulence, J Virol 80, 1563–1573.

    Article  PubMed  CAS  Google Scholar 

  60. Govindasamy, L., Hueffer, K., Parrish, C. R., and Agbandje-McKenna, M. (2003) Structures of host range-controlling regions of the capsids of canine and feline parvoviruses and mutants, J Virol 77, 12211–12221.

    Article  PubMed  CAS  Google Scholar 

  61. Hueffer, K., Govindasamy, L., Agbandje-McKenna, M., and Parrish, C. R. (2003) Combinations of two capsid regions controlling canine host range determine canine transferrin receptor binding by canine and feline parvoviruses, J Virol 77, 10099–10105.

    Article  PubMed  CAS  Google Scholar 

  62. Hafenstein, S., Palermo, L. M., Kostyuchenko, V. A., Xiao, C., Morais, M. C., Nelson, C. D., Bowman, V. D., Battisti, A. J., Chipman, P. R., Parrish, C. R., and Rossmann, M. G. (2007) Asymmetric binding of transferrin receptor to parvovirus capsids, Proc Natl Acad Sci U S A 104, 6585–6589.

    Article  PubMed  CAS  Google Scholar 

  63. Chipman, P. R., Agbandje-McKenna, M., Kajigaya, S., Brown, K. E., Young, N. S., Baker, T. S., and Rossmann, M. G. (1996) Cryo-electron microscopy studies of empty capsids of human parvovirus B19 complexed with its cellular receptor, Proc Natl Acad Sci U S A 93, 7502–7506.

    Article  PubMed  CAS  Google Scholar 

  64. Kern, A., Schmidt, K., Leder, C., Muller, O. J., Wobus, C. E., Bettinger, K., Von der Lieth, C. W., King, J. A., and Kleinschmidt, J. A. (2003) Identification of a heparin-binding motif on adeno-associated virus type 2 capsids, J Virol 77, 11072–11081.

    Article  PubMed  CAS  Google Scholar 

  65. Lochrie, M. A., Tatsuno, G. P., Christie, B., McDonnell, J. W., Zhou, S., Surosky, R., Pierce, G. F., and Colosi, P. (2006) Mutations on the external surfaces of adeno-associated virus type 2 capsids that affect transduction and neutralization, J Virol 80, 821–834.

    Article  PubMed  CAS  Google Scholar 

  66. Opie, S. R., Warrington, K. H., Jr., Agbandje-McKenna, M., Zolotukhin, S., and Muzyczka, N. (2003) Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding, J Virol 77, 6995–7006.

    Article  PubMed  CAS  Google Scholar 

  67. Wu, P., Xiao, W., Conlon, T., Hughes, J., Agbandje-McKenna, M., Ferkol, T., Flotte, T., and Muzyczka, N. (2000) Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism, J Virol 74, 8635–8647.

    Article  PubMed  CAS  Google Scholar 

  68. Chen, C. L., Jensen, R. L., Schnepp, B. C., Connell, M. J., Shell, R., Sferra, T. J., Bartlett, J. S., Clark, K. R., and Johnson, P. R. (2005) Molecular characterization of adeno-associated viruses infecting children, J Virol 79, 14781–14792.

    Article  PubMed  CAS  Google Scholar 

  69. Qing, K., Mah, C., Hansen, J., Zhou, S., Dwarki, V., and Srivastava, A. (1999) Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2, Nat Med 5, 71–77.

    Article  PubMed  CAS  Google Scholar 

  70. Kashiwakura, Y., Tamayose, K., Iwabuchi, K., Hirai, Y., Shimada, T., Matsumoto, K., Nakamura, T., Watanabe, M., Oshimi, K., and Daida, H. (2005) Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection, J Virol 79, 609–614.

    Article  PubMed  CAS  Google Scholar 

  71. Akache, B., Grimm, D., Pandey, K., Yant, S. R., Xu, H., and Kay, M. A. (2006) The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9, J Virol 80, 9831–9836.

    Article  PubMed  CAS  Google Scholar 

  72. Summerford, C., Bartlett, J. S., and Samulski, R. J. (1999) AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection, Nat Med 5, 78–82.

    Article  PubMed  CAS  Google Scholar 

  73. Asokan, A., Hamra, J. B., Govindasamy, L., Agbandje-McKenna, M., and Samulski, R. J. (2006) Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry, J Virol 80, 8961–8969.

    Article  PubMed  CAS  Google Scholar 

  74. Duan, D., Li, Q., Kao, A. W., Yue, Y., Pessin, J. E., and Engelhardt, J. F. (1999) Dynamin is required for recombinant adeno-associated virus type 2 infection, J Virol 73, 10371–10376.

    PubMed  CAS  Google Scholar 

  75. Bartlett, J. S., Wilcher, R., and Samulski, R. J. (2000) Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors, J Virol 74, 2777–2785.

    Article  PubMed  CAS  Google Scholar 

  76. Bantel-Schaal, U., Hub, B., and Kartenbeck, J. (2002) Endocytosis of adeno-associated virus type 5 leads to accumulation of virus particles in the Golgi compartment, J Virol 76, 2340–2349.

    Article  PubMed  CAS  Google Scholar 

  77. Bantel-Schaal, U., Braspenning-Wesch, I., and Kartenbeck, J. (2009) Adeno-associated virus type 5 exploits two different entry pathways in human embryo fibroblasts, J Gen Virol 90, 317–322.

    Article  PubMed  CAS  Google Scholar 

  78. Seisenberger, G., Ried, M. U., Endress, T., Buning, H., Hallek, M., and Brauchle, C. (2001) Real-time single-molecule imaging of the infection pathway of an adeno-associated virus, Science 294, 1929–1932.

    Article  PubMed  CAS  Google Scholar 

  79. Duan, D., Yue, Y., Yan, Z., Yang, J., and Engelhardt, J. F. (2000) Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus, J Clin Invest 105, 1573–1587.

    Article  PubMed  CAS  Google Scholar 

  80. Sanlioglu, S., Benson, P. K., Yang, J., Atkinson, E. M., Reynolds, T., and Engelhardt, J. F. (2000) Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation, J Virol 74, 9184–9196.

    Article  PubMed  CAS  Google Scholar 

  81. Qiu, J., and Brown, K. E. (1999) A 110-kDa nuclear shuttle protein, nucleolin, specifically binds to adeno-associated virus type 2 (AAV-2) capsid, Virology 257, 373–382.

    Article  PubMed  CAS  Google Scholar 

  82. Hansen, J., Qing, K., Kwon, H. J., Mah, C., and Srivastava, A. (2000) Impaired intracellular trafficking of adeno-associated virus type 2 vectors limits efficient transduction of murine fibroblasts, J Virol 74, 992–996.

    Article  PubMed  CAS  Google Scholar 

  83. Hansen, J., Qing, K., and Srivastava, A. (2001) Adeno-associated virus type 2-mediated gene transfer: altered endocytic processing enhances transduction efficiency in murine fibroblasts, J Virol 75, 4080–4090.

    Article  PubMed  CAS  Google Scholar 

  84. Hauck, B., Zhao, W., High, K., and Xiao, W. (2004) Intracellular viral processing, not single-stranded DNA accumulation, is crucial for recombinant adeno-associated virus transduction, J Virol 78, 13678–13686.

    Article  PubMed  CAS  Google Scholar 

  85. Ding, W., Zhang, L. N., Yeaman, C., and Engelhardt, J. F. (2006) rAAV2 traffics through both the late and the recycling endosomes in a dose-dependent fashion, Mol Ther 13, 671–682.

    Article  PubMed  CAS  Google Scholar 

  86. Ding, W., Zhang, L., Yan, Z., and Engelhardt, J. F. (2005) Intracellular trafficking of adeno-associated viral vectors, Gene Ther 12, 873–880.

    Article  PubMed  CAS  Google Scholar 

  87. Douar, A. M., Poulard, K., Stockholm, D., and Danos, O. (2001) Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation, J Virol 75, 1824–1833.

    Article  PubMed  CAS  Google Scholar 

  88. Hansen, J., Qing, K., and Srivastava, A. (2001) Adeno-associated virus type 2-mediated gene transfer: altered endocytic processing enhances transduction efficiency in murine fibroblasts, J Virol 75, 4080–4090.

    Article  PubMed  CAS  Google Scholar 

  89. Xiao, W., Warrington, K. H., Jr., Hearing, P., Hughes, J., and Muzyczka, N. (2002) Adenovirus-facilitated nuclear translocation of adeno-associated virus type 2, J Virol 76, 11505–11517.

    Article  PubMed  CAS  Google Scholar 

  90. Pajusola, K., Gruchala, M., Joch, H., Luscher, T. F., Yla-Herttuala, S., and Bueler, H. (2002) Cell-type-specific characteristics modulate the transduction efficiency of adeno-associated virus type 2 and restrain infection of endothelial cells, J Virol 76, 11530–11540.

    Article  PubMed  CAS  Google Scholar 

  91. Akache, B., Grimm, D., Shen, X., Fuess, S., Yant, S. R., Glazer, D. S., Park, J., and Kay, M. A. (2007) A two-hybrid screen identifies cathepsins B and L as uncoating factors for adeno-associated virus 2 and 8, Mol Ther 15, 330–339.

    Article  PubMed  CAS  Google Scholar 

  92. Suikkanen, S., Antila, M., Jaatinen, A., Vihinen-Ranta, M., and Vuento, M. (2003) Release of canine parvovirus from endocytic vesicles, Virology 316, 267–280.

    Article  PubMed  CAS  Google Scholar 

  93. Stahnke, S., Lux, K., Uhrig, S., Kreppel, F., Hösel, M., Coutelle, O., Ogris, M., Hallek, M., and Büning, H. (2011) Intrinsic phospholipase A2 activity of adeno-associated virus is involved in endosomal escape of incoming particles, Virology 409, 77–83. Epub 2010 Oct 25.

    Article  PubMed  CAS  Google Scholar 

  94. Murphy, S. L., Bhagwat, A., Edmonson, S., Zhou, S., and High, K. A. (2008) High-throughput screening and biophysical interrogation of hepatotropic AAV, Mol Ther 16, 1960–1967.

    Article  PubMed  CAS  Google Scholar 

  95. Agbandje-McKenna, M., Llamas-Saiz, A. L., Wang, F., Tattersall, P., and Rossmann, M. G. (1998) Functional implications of the structure of the murine parvovirus, minute virus of mice, Structure 6, 1369–1381.

    Article  PubMed  CAS  Google Scholar 

  96. Tsao, J., Chapman, M. S., Agbandje, M., Keller, W., Smith, K., Wu, H., Luo, M., Smith, T. J., Rossmann, M. G., Compans, R. W., and et al. (1991) The three-dimensional structure of canine parvovirus and its functional implications, Science 251, 1456–1464.

    Article  PubMed  CAS  Google Scholar 

  97. Xie, Q., and Chapman, M. S. (1996) Canine parvovirus capsid structure, analyzed at 2.9 A resolution, J Mol Biol 264, 497–520.

    Article  PubMed  CAS  Google Scholar 

  98. Grieger, J. C., Johnson, J. S., Gurda-Whitaker, B., Agbandje-McKenna, M., and Samulski, R. J. (2007) Surface-exposed adeno-associated virus Vp1-NLS capsid fusion protein rescues infectivity of noninfectious wild-type Vp2/Vp3 and Vp3-only capsids but not that of fivefold pore mutant virions, J Virol 81, 7833–7843.

    Article  PubMed  CAS  Google Scholar 

  99. DiPrimio, N., Asokan, A., Govindasamy, L., Agbandje-McKenna, M., and Samulski, R. J. (2008) Surface loop dynamics in adeno-associated virus capsid assembly, J Virol 82, 5178–5189.

    Article  PubMed  CAS  Google Scholar 

  100. Yan, Z., Zak, R., Luxton, G. W., Ritchie, T. C., Bantel-Schaal, U., and Engelhardt, J. F. (2002) Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors, J Virol 76, 2043–2053.

    Article  PubMed  CAS  Google Scholar 

  101. Ding, W., Yan, Z., Zak, R., Saavedra, M., Rodman, D. M., and Engelhardt, J. F. (2003) Second-strand genome conversion of adeno-associated virus type 2 (AAV-2) and AAV-5 is not rate limiting following apical infection of polarized human airway epithelia, J Virol 77, 7361–7366.

    Article  PubMed  CAS  Google Scholar 

  102. Yan, Z., Zak, R., Zhang, Y., Ding, W., Godwin, S., Munson, K., Peluso, R., and Engelhardt, J. F. (2004) Distinct classes of proteasome-modulating agents cooperatively augment recombinant adeno-associated virus type 2 and type 5-mediated transduction from the apical surfaces of human airway epithelia, J Virol 78, 2863–2874.

    Article  PubMed  CAS  Google Scholar 

  103. Denby, L., Nicklin, S. A., and Baker, A. H. (2005) Adeno-associated virus (AAV)-7 and -8 poorly transduce vascular endothelial cells and are sensitive to proteasomal degradation, Gene Ther 12, 1534–1538.

    Article  PubMed  CAS  Google Scholar 

  104. Jennings, K., Miyamae, T., Traister, R., Marinov, A., Katakura, S., Sowders, D., Trapnell, B., Wilson, J. M., Gao, G., and Hirsch, R. (2005) Proteasome inhibition enhances AAV-mediated transgene expression in human synoviocytes in vitro and in vivo, Mol Ther 11, 600–607.

    Article  PubMed  CAS  Google Scholar 

  105. Zhong, L., Zhao, W., Wu, J., Li, B., Zolotukhin, S., Govindasamy, L., Agbandje-McKenna, M., and Srivastava, A. (2007) A dual role of EGFR protein tyrosine kinase signaling in ubiquitination of AAV2 capsids and viral second-strand DNA synthesis, Mol Ther 15, 1323–1330.

    Article  PubMed  CAS  Google Scholar 

  106. Zhong, L., Li, B., Mah, C. S., Govindasamy, L., Agbandje-McKenna, M., Cooper, M., Herzog, R. W., Zolotukhin, I., Warrington, K. H., Jr., Weigel-Van Aken, K. A., Hobbs, J. A., Zolotukhin, S., Muzyczka, N., and Srivastava, A. (2008) Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses, Proc Natl Acad Sci U S A 105, 7827–7832.

    Article  PubMed  CAS  Google Scholar 

  107. Zhong, L., Li, B., Jayandharan, G., Mah, C. S., Govindasamy, L., Agbandje-McKenna, M., Herzog, R. W., Weigel-Van Aken, K. A., Hobbs, J. A., Zolotukhin, S., Muzyczka, N., and Srivastava, A. (2008) Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression, Virology 381, 194–202.

    Article  PubMed  CAS  Google Scholar 

  108. Kelkar, S., De, B. P., Gao, G., Wilson, J. M., Crystal, R. G., and Leopold, P. L. (2006) A common mechanism for cytoplasmic dynein-dependent microtubule binding shared among adeno-associated virus and adenovirus serotypes, J Virol 80, 7781–7785.

    Article  PubMed  CAS  Google Scholar 

  109. Zhao, W., Zhong, L., Wu, J., Chen, L., Qing, K., Weigel-Kelley, K. A., Larsen, S. H., Shou, W., Warrington, K. H., Jr., and Srivastava, A. (2006) Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors, Virology 353, 283–293.

    Article  PubMed  CAS  Google Scholar 

  110. Hirosue, S., Senn, K., Clement, N., Nonnenmacher, M., Gigout, L., Linden, R. M., and Weber, T. (2007) Effect of inhibition of dynein function and microtubule-altering drugs on AAV2 transduction, Virology 367, 10–18.

    Article  PubMed  CAS  Google Scholar 

  111. Xu, J., Ma, C., Bass, C., and Terwilliger, E. F. (2005) A combination of mutations enhances the neurotropism of AAV-2, Virology 341, 203–214.

    Article  PubMed  CAS  Google Scholar 

  112. Xiao, W., Warrington, K. H., Jr., Hearing, P., Hughes, J., and Muzyczka, N. (2002) Adenovirus-facilitated nuclear translocation of adeno-associated virus type 2, J Virol 76, 11505–11517.

    Article  PubMed  CAS  Google Scholar 

  113. Grieger, J. C., Snowdy, S., and Samulski, R. J. (2006) Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly, J Virol 80, 5199–5210.

    Article  PubMed  CAS  Google Scholar 

  114. Hansen, J., Qing, K., and Srivastava, A. (2001) Infection of purified nuclei by adeno-associated virus 2, Mol Ther 4, 289–296.

    Article  PubMed  CAS  Google Scholar 

  115. Cohen, S., and Pante, N. (2005) Pushing the envelope: microinjection of Minute virus of mice into Xenopus oocytes causes damage to the nuclear envelope, J Gen Virol 86, 3243–3252.

    Article  PubMed  CAS  Google Scholar 

  116. Cohen, S., Behzad, A. R., Carroll, J. B., and Pante, N. (2006) Parvoviral nuclear import: bypassing the host nuclear-transport machinery, J Gen Virol 87, 3209–3213.

    Article  PubMed  CAS  Google Scholar 

  117. Sipo, I., Fechner, H., Pinkert, S., Suckau, L., Wang, X., Weger, S., and Poller, W. (2007) Differential internalization and nuclear uncoating of self-complementary adeno-associated virus pseudotype vectors as determinants of cardiac cell transduction, Gene Ther 14, 1319–1329.

    PubMed  CAS  Google Scholar 

  118. Thomas, C. E., Storm, T. A., Huang, Z., and Kay, M. A. (2004) Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors, J Virol 78, 3110–3122.

    Article  PubMed  CAS  Google Scholar 

  119. Zhong, L., Li, W., Yang, Z., Qing, K., Tan, M., Hansen, J., Li, Y., Chen, L., Chan, R. J., Bischof, D., Maina, N., Weigel-Kelley, K. A., Zhao, W., Larsen, S. H., Yoder, M. C., Shou, W., and Srivastava, A. (2004) Impaired nuclear transport and uncoating limit recombinant adeno-associated virus 2 vector-­mediated transduction of primary murine hematopoietic cells, Hum Gene Ther 15, 1207–1218.

    Article  PubMed  CAS  Google Scholar 

  120. Stieger, K., Schroeder, J., Provost, N., Mendes-Madeira, A., Belbellaa, B., Le Meur, G., Weber, M., Deschamps, J. Y., Lorenz, B., Moullier, P., and Rolling, F. (2009) Detection of intact rAAV particles up to 6 years after successful gene transfer in the retina of dogs and primates, Mol Ther 17, 516–523.

    Article  PubMed  CAS  Google Scholar 

  121. Lux, K., Goerlitz, N., Schlemminger, S., Perabo, L., Goldnau, D., Endell, J., Leike, K., Kofler, D. M., Finke, S., Hallek, M., and Buning, H. (2005) Green fluorescent protein-tagged adeno-associated virus particles allow the study of cytosolic and nuclear trafficking, J Virol 79, 11776–11787.

    Article  PubMed  CAS  Google Scholar 

  122. Cotmore, S. F., D’Abramo A, M., Jr., Ticknor, C. M., and Tattersall, P. (1999) Controlled conformational transitions in the MVM virion expose the VP1 N-terminus and viral genome without particle disassembly, Virology 254, 169–181.

    Google Scholar 

  123. Ros, C., Baltzer, C., Mani, B., and Kempf, C. (2006) Parvovirus uncoating in vitro reveals a mechanism of DNA release without capsid disassembly and striking differences in encapsidated DNA stability, Virology 345, 137–147.

    Article  PubMed  CAS  Google Scholar 

  124. Vihinen-Ranta, M., Wang, D., Weichert, W. S., and Parrish, C. R. (2002) The VP1 N-terminal sequence of canine parvovirus affects nuclear transport of capsids and efficient cell infection, J Virol 76, 1884–1891.

    Article  PubMed  CAS  Google Scholar 

  125. Ferrari, F. K., Samulski, T., Shenk, T., and Samulski, R. J. (1996) Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors, J Virol 70, 3227–3234.

    PubMed  CAS  Google Scholar 

  126. Fisher, K. J., Gao, G., Weitzman, M. D., DeMatteo, R., Burda, J., and Wilson, J. M. (1996) Transduction with recombinant adeno-associated virus for gene therapy is ­limited by leading-strand synthesis, J. Virol. 70, 520–532.

    PubMed  CAS  Google Scholar 

  127. Zhong, L., Zhou, X., Li, Y., Qing, K., Xiao, X., Samulski, R. J., and Srivastava, A. (2008) Single-polarity recombinant adeno-associated virus 2 vector-mediated transgene expression in vitro and in vivo: mechanism of transduction, Mol Ther 16, 290–295.

    Article  PubMed  CAS  Google Scholar 

  128. Zhou, X., Zeng, X., Fan, Z., Li, C., McCown, T., Samulski, R. J., and Xiao, X. (2008) Adeno-associated virus of a single-polarity DNA genome is capable of transduction in vivo, Mol Ther 16, 494–499.

    Article  PubMed  CAS  Google Scholar 

  129. Qing, K., Hansen, J., Weigel-Kelley, K. A., Tan, M., Zhou, S., and Srivastava, A. (2001) Adeno-associated virus type 2-mediated gene transfer: role of cellular fkbp52 protein in transgene expression, J Virol 75, 8968–8976.

    Article  PubMed  CAS  Google Scholar 

  130. Qing, K., Khuntirat, B., Mah, C., Kube, D. M., Wang, X. S., Ponnazhagan, S., Zhou, S., Dwarki, V. J., Yoder, M. C., and Srivastava, A. (1998) Adeno-associated virus type 2-mediated gene transfer: correlation of tyrosine phosphorylation of the cellular single-stranded D sequence-binding protein with transgene expression in human cells in vitro and murine tissues in vivo, J Virol 72, 1593–1599.

    PubMed  CAS  Google Scholar 

  131. Qing, K., Wang, X. S., Kube, D. M., Ponnazhagan, S., Bajpai, A., and Srivastava, A. (1997) Role of tyrosine phosphorylation of a cellular protein in adeno-associated virus 2-mediated transgene expression, Proc Natl Acad Sci U S A 94, 10879–10884.

    Article  PubMed  CAS  Google Scholar 

  132. Qing, K., Li, W., Zhong, L., Tan, M., Hansen, J., Weigel-Kelley, K. A., Chen, L., Yoder, M. C., and Srivastava, A. (2003) Adeno-associated virus type 2-mediated gene transfer: role of cellular T-cell protein tyrosine phosphatase in transgene expression in established cell lines in vitro and transgenic mice in vivo, J Virol 77, 2741–2746.

    Article  PubMed  CAS  Google Scholar 

  133. Nakai, H., Storm, T. A., Fuess, S., and Kay, M. A. (2003) Pathways of removal of free DNA vector ends in normal and DNA-PKcs-deficient SCID mouse hepatocytes transduced with rAAV vectors, Hum Gene Ther 14, 871–881.

    Article  PubMed  CAS  Google Scholar 

  134. Yue, Y., and Duan, D. (2003) Double strand interaction is the predominant pathway for intermolecular recombination of adeno-associated viral genomes, Virology 313, 1–7.

    Article  PubMed  CAS  Google Scholar 

  135. McCarty, D. M., Young, S. M., Jr., and Samulski, R. J. (2004) Integration of adeno-associated virus (AAV) and recombinant AAV vectors, Annu Rev Genet 38, 819–845.

    Article  PubMed  CAS  Google Scholar 

  136. Cervelli, T., Palacios, J. A., Zentilin, L., Mano, M., Schwartz, R. A., Weitzman, M. D., and Giacca, M. (2008) Processing of recombinant AAV genomes occurs in specific nuclear structures that overlap with foci of DNA-damage-response proteins, J Cell Sci 121, 349–357.

    Article  PubMed  CAS  Google Scholar 

  137. Schwartz, R. A., Palacios, J. A., Cassell, G. D., Adam, S., Giacca, M., and Weitzman, M. D. (2007) The Mre11/Rad50/Nbs1 complex limits adeno-associated virus transduction and replication, J Virol 81, 12936–12945.

    Article  PubMed  CAS  Google Scholar 

  138. Jurvansuu, J., Raj, K., Stasiak, A., and Beard, P. (2005) Viral transport of DNA damage that mimics a stalled replication fork, J Virol 79, 569–580.

    Article  PubMed  CAS  Google Scholar 

  139. Johnson, J. S., and Samulski, R. J. (2009) Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus, J Virol 83, 2632–2644.

    Article  PubMed  CAS  Google Scholar 

  140. Knipe, D. M., and Howley, P. M. H. (2001) Fields Viroloy, Lippincott Williams&Wilkins, Philadelphia, USA.

    Google Scholar 

  141. Chiorini, J. A., Wiener, S. M., Owens, R. A., Kyostio, S. R., Kotin, R. M., and Safer, B. (1994) Sequence requirements for stable binding and function of Rep68 on the adeno-associated virus type 2 inverted terminal repeats, J Virol 68, 7448–7457.

    PubMed  CAS  Google Scholar 

  142. McCarty, D. M., Pereira, D. J., Zolotukhin, I., Zhou, X., Ryan, J. H., and Muzyczka, N. (1994) Identification of linear DNA sequences that specifically bind the adeno-associated virus Rep protein, J Virol 68, 4988–4997.

    PubMed  CAS  Google Scholar 

  143. Owens, R. A., Weitzman, M. D., Kyostio, S. R., and Carter, B. J. (1993) Identification of a DNA-binding domain in the amino terminus of adeno-associated virus Rep proteins, J Virol 67, 997–1005.

    PubMed  CAS  Google Scholar 

  144. Snyder, R. O., Im, D. S., Ni, T., Xiao, X., Samulski, R. J., and Muzyczka, N. (1993) Features of the adeno-associated virus origin involved in substrate recognition by the viral Rep protein, J Virol 67, 6096–6104.

    PubMed  CAS  Google Scholar 

  145. Ryan, J. H., Zolotukhin, S., and Muzyczka, N. (1996) Sequence requirements for binding of Rep68 to the adeno-associated virus terminal repeats, J Virol 70, 1542–1553.

    PubMed  CAS  Google Scholar 

  146. Snyder, R. O., Samulski, R. J., and Muzyczka, N. (1990) In vitro resolution of covalently joined AAV chromosome ends, Cell 60, 105–113.

    Article  PubMed  CAS  Google Scholar 

  147. Im, D. S., and Muzyczka, N. (1990) The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity, Cell 61, 447–457.

    Article  PubMed  CAS  Google Scholar 

  148. Zhou, X., Zolotukhin, I., Im, D. S., and Muzyczka, N. (1999) Biochemical characterization of adeno-associated virus rep68 DNA helicase and ATPase activities, J Virol 73, 1580–1590.

    PubMed  CAS  Google Scholar 

  149. Nash, K., Chen, W., and Muzyczka, N. (2008) Complete in vitro reconstitution of adeno-associated virus DNA replication requires the minichromosome maintenance complex proteins, J Virol 82, 1458–1464.

    Article  PubMed  CAS  Google Scholar 

  150. Ni, T. H., McDonald, W. F., Zolotukhin, I., Melendy, T., Waga, S., Stillman, B., and Muzyczka, N. (1998) Cellular proteins required for adeno-associated virus DNA replication in the absence of adenovirus coinfection, J Virol 72, 2777–2787.

    PubMed  CAS  Google Scholar 

  151. Ward, P., Dean, F. B., O’Donnell, M. E., and Berns, K. I. (1998) Role of the adenovirus DNA-binding protein in in vitro adeno-associated virus DNA replication, J Virol 72, 420–427.

    PubMed  CAS  Google Scholar 

  152. Stracker, T. H., Cassell, G. D., Ward, P., Loo, Y. M., van Breukelen, B., Carrington-Lawrence, S. D., Hamatake, R. K., van der Vliet, P. C., Weller, S. K., Melendy, T., and Weitzman, M. D. (2004) The Rep protein of adeno-associated virus type 2 interacts with single-stranded DNA-binding proteins that enhance viral replication, J Virol 78, 441–453.

    Article  PubMed  CAS  Google Scholar 

  153. Myers, M. W., and Carter, B. J. (1981) Adeno-associated virus replication. The effect of L-canavanine or a helper virus mutation on accumulation of viral capsids and progeny single-stranded DNA, J Biol Chem 256, 567–570.

    PubMed  CAS  Google Scholar 

  154. Wistuba, A., Kern, A., Weger, S., Grimm, D., and Kleinschmidt, J. A. (1997) Subcellular compartmentalization of adeno-associated virus type 2 assembly, J Virol 71, 1341–1352.

    PubMed  CAS  Google Scholar 

  155. Weitzman, M. D., Fisher, K. J., and Wilson, J. M. (1996) Recruitment of wild-type and recombinant adeno-associated virus into adenovirus replication centers, J Virol 70, 1845–1854.

    PubMed  CAS  Google Scholar 

  156. Hunter, L. A., and Samulski, R. J. (1992) Colocalization of adeno-associated virus Rep and capsid proteins in the nuclei of infected cells, J Virol 66, 317–324.

    PubMed  CAS  Google Scholar 

  157. Bleker, S., Pawlita, M., and Kleinschmidt, J. A. (2006) Impact of capsid conformation and Rep-capsid interactions on adeno-associated virus type 2 genome packaging, J Virol 80, 810–820.

    Article  PubMed  CAS  Google Scholar 

  158. Zhou, X., and Muzyczka, N. (1998) In vitro packaging of adeno-associated virus DNA, J Virol 72, 3241–3247.

    PubMed  CAS  Google Scholar 

  159. Myers, M. W., and Carter, B. J. (1980) Assembly of adeno-associated virus, Virology 102, 71–82.

    Article  PubMed  CAS  Google Scholar 

  160. Bevington, J. M., Needham, P. G., Verrill, K. C., Collaco, R. F., Basrur, V., and Trempe, J. P. (2007) Adeno-associated virus interactions with B23/Nucleophosmin: identification of sub-nucleolar virion regions, Virology 357, 102–113.

    Article  PubMed  CAS  Google Scholar 

  161. Ruffing, M., Zentgraf, H., and Kleinschmidt, J. A. (1992) Assembly of viruslike particles by recombinant structural proteins of adeno-associated virus type 2 in insect cells, J Virol 66, 6922–6930.

    PubMed  CAS  Google Scholar 

  162. Wistuba, A., Weger, S., Kern, A., and Kleinschmidt, J. A. (1995) Intermediates of adeno-associated virus type 2 assembly: identification of soluble complexes containing Rep and Cap proteins, J Virol 69, 5311–5319.

    PubMed  CAS  Google Scholar 

  163. Steinbach, S., Wistuba, A., Bock, T., and Kleinschmidt, J. A. (1997) Assembly of adeno-associated virus type 2 capsids in vitro, J Gen Virol 78 (Pt 6), 1453–1462.

    PubMed  CAS  Google Scholar 

  164. Hoque, M., Ishizu, K., Matsumoto, A., Han, S. I., Arisaka, F., Takayama, M., Suzuki, K., Kato, K., Kanda, T., Watanabe, H., and Handa, H. (1999) Nuclear transport of the major capsid protein is essential for adeno-associated virus capsid formation, J Virol 73, 7912–7915.

    PubMed  CAS  Google Scholar 

  165. Warrington, K. H., Jr., Gorbatyuk, O. S., Harrison, J. K., Opie, S. R., Zolotukhin, S., and Muzyczka, N. (2004) Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus, J Virol 78, 6595–6609.

    Article  PubMed  CAS  Google Scholar 

  166. Rabinowitz, J. E., Xiao, W., and Samulski, R. J. (1999) Insertional mutagenesis of AAV2 capsid and the production of recombinant virus, Virology 265, 274–285.

    Article  PubMed  CAS  Google Scholar 

  167. Sonntag et al (2010) PNAS 107, 10220–10225.

    Article  PubMed  CAS  Google Scholar 

  168. Prasad, K. M., and Trempe, J. P. (1995) The adeno-associated virus Rep78 protein is covalently linked to viral DNA in a preformed virion, Virology 214, 360–370.

    Article  PubMed  CAS  Google Scholar 

  169. Wang, X. S., Ponnazhagan, S., and Srivastava, A. (1996) Rescue and replication of adeno-associated virus type 2 as well as vector DNA sequences from recombinant plasmids containing deletions in the viral inverted terminal repeats: selective encapsidation of viral genomes in progeny virions, J Virol 70, 1668–1677.

    PubMed  CAS  Google Scholar 

  170. Wang, X. S., Qing, K., Ponnazhagan, S., and Srivastava, A. (1997) Adeno-associated virus type 2 DNA replication in vivo: mutation analyses of the D sequence in viral inverted terminal repeats, J Virol 71, 3077–3082.

    PubMed  CAS  Google Scholar 

  171. Srivastava, A., Wang, X.-S., Ponnazhagan, S., Zhou, S. Z., and Yoder, M. C. (1996) Adeno-associated Virus 2-Mediated Transduction and Erythroid Lineage-Specific Expression in Human Hematopoietic Progenitor Cells, in Adeno-Associated Virus (AAV) Vectors in Gene Therapy (Berns, K. I., and Giraud, C., Eds.), pp 93–117, Springer, Berlin Heidelberg New York.

    Google Scholar 

  172. Xiao, X., Xiao, W., Li, J., and Samulski, R. J. (1997) A novel 165-base-pair terminal repeat sequence is the sole cis requirement for the adeno-associated virus life cycle, J Virol 71, 941–948.

    PubMed  CAS  Google Scholar 

  173. Dong, J. Y., Fan, P. D., and Frizzell, R. A. (1996) Quantitative analysis of the packaging capacity of recombinant adeno-associated virus, Hum Gene Ther 7, 2101–2112.

    Article  PubMed  CAS  Google Scholar 

  174. Hermonat, P. L., Quirk, J. G., Bishop, B. M., and Han, L. (1997) The packaging capacity of adeno-associated virus (AAV) and the potential for wild-type-plus AAV gene therapy vectors, FEBS Lett 407, 78–84.

    Article  PubMed  CAS  Google Scholar 

  175. Grieger, J. C., and Samulski, R. J. (2005) Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps, J Virol 79, 9933–9944.

    Article  PubMed  CAS  Google Scholar 

  176. Allocca, M., Doria, M., Petrillo, M., Colella, P., Garcia-Hoyos, M., Gibbs, D., Kim, S. R., Maguire, A., Rex, T. S., Di Vicino, U., Cutillo, L., Sparrow, J. R., Williams, D. S., Bennett, J., and Auricchio, A. (2008) Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice, J Clin Invest 118, 1955–1964.

    Article  PubMed  CAS  Google Scholar 

  177. Lai, Y., Yue, Y., and Duan, D. Evidence for the failure of adeno-associated virus serotype 5 to package a viral genome  >  or  =  8.2 kb, Mol Ther 18, 75–79.

    Google Scholar 

  178. Dong, B., Nakai, H., and Xiao, W. Characterization of genome integrity for oversized recombinant AAV vector, Mol Ther 18, 87–92.

    Google Scholar 

  179. Wu, Z., Yang, H., and Colosi, P. Effect of genome size on AAV vector packaging, Mol Ther 18, 80–86.

    Google Scholar 

  180. Ward, P., Clement, N., and Linden, R. M. (2007) cis effects in adeno-associated virus type 2 replication, J Virol 81, 9976–9989.

    Article  PubMed  CAS  Google Scholar 

  181. Grimm, D., Kern, A., Pawlita, M., Ferrari, F., Samulski, R., and Kleinschmidt, J. (1999) Titration of AAV-2 particles via a novel capsid ELISA: packaging of genomes can limit production of recombinant AAV-2, Gene Ther 6, 1322–1330.

    Article  PubMed  CAS  Google Scholar 

  182. Drittanti, L., Jenny, C., Poulard, K., Samba, A., Manceau, P., Soria, N., Vincent, N., Danos, O., and Vega, M. (2001) Optimised helper virus-free production of high-quality adeno-associated virus vectors, J Gene Med 3, 59–71.

    Article  PubMed  CAS  Google Scholar 

  183. Sommer, J. M., Smith, P. H., Parthasarathy, S., Isaacs, J., Vijay, S., Kieran, J., Powell, S. K., McClelland, A., and Wright, J. F. (2003) Quantification of adeno-associated virus particles and empty capsids by optical density measurement, Mol Ther 7, 122–128.

    Article  PubMed  CAS  Google Scholar 

  184. Park, J. Y., Lim, B. P., Lee, K., Kim, Y. G., and Jo, E. C. (2006) Scalable production of adeno-associated virus type 2 vectors via suspension transfection, Biotechnol Bioeng 94, 416–430.

    Article  PubMed  CAS  Google Scholar 

  185. Prasad, K. M., Zhou, C., and Trempe, J. P. (1997) Characterization of the Rep78/adeno-associated virus complex, Virology 229, 183–192.

    Article  PubMed  CAS  Google Scholar 

  186. Dubielzig, R., King, J. A., Weger, S., Kern, A., and Kleinschmidt, J. A. (1999) Adeno-associated virus type 2 protein interactions: formation of pre-encapsidation complexes, J Virol 73, 8989–8998.

    PubMed  CAS  Google Scholar 

  187. Chejanovsky, N., and Carter, B. J. (1989) Mutagenesis of an AUG codon in the adeno-associated virus rep gene: effects on viral DNA replication, Virology 173, 120–128.

    Article  PubMed  CAS  Google Scholar 

  188. King, J. A., Dubielzig, R., Grimm, D., and Kleinschmidt, J. A. (2001) DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids, Embo J 20, 3282–3291.

    Article  PubMed  CAS  Google Scholar 

  189. Yoon-Robarts, M., Blouin, A. G., Bleker, S., Kleinschmidt, J. A., Aggarwal, A. K., Escalante, C. R., and Linden, R. M. (2004) Residues within the B’ motif are critical for DNA binding by the superfamily 3 helicase Rep40 of adeno-associated virus type 2, J Biol Chem 279, 50472–50481.

    Article  PubMed  CAS  Google Scholar 

  190. Shi, W., Arnold, G. S., and Bartlett, J. S. (2001) Insertional mutagenesis of the adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors, Hum Gene Ther 12, 1697–1711.

    Article  PubMed  CAS  Google Scholar 

  191. Zaiss and Muruve (2008) Immunity to adeno-associated virus vectors in animals and humans: a continued challenge. Gene Therapy 15, 808–16.

    Article  PubMed  CAS  Google Scholar 

  192. Moskalenko, M., Chen, L., van Roey, M., Donahue, B. A., Snyder, R. O., McArthur, J. G., and Patel, S. D. (2000) Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure, J Virol 74, 1761–1766.

    Article  PubMed  CAS  Google Scholar 

  193. Wobus, C. E., Hugle-Dorr, B., Girod, A., Petersen, G., Hallek, M., and Kleinschmidt, J. A. (2000) Monoclonal antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping and identification of capsid domains involved in AAV-2-cell interaction and neutralization of AAV-2 infection, J Virol 74, 9281–9293.

    Article  PubMed  CAS  Google Scholar 

  194. Kuck, D., Kern, A., and Kleinschmidt, J. A. (2007) Development of AAV serotype-specific ELISAs using novel monoclonal antibodies, J Virol Methods 140, 17–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lakshmanan Govindasamy and Brittney L. Gurda for help in generating Figures 15, Antonette Bennett for providing information on baculovirus expression of AAV VLPs, and Britta Gerlach and Bettina Böttcher for providing unpublished data. NIH project R01 GM082946 to MA-M is also acknowledged for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mavis Agbandje-McKenna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Agbandje-McKenna, M., Kleinschmidt, J. (2012). AAV Capsid Structure and Cell Interactions. In: Snyder, R., Moullier, P. (eds) Adeno-Associated Virus. Methods in Molecular Biology, vol 807. Humana Press. https://doi.org/10.1007/978-1-61779-370-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-370-7_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-369-1

  • Online ISBN: 978-1-61779-370-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics