Skip to main content

Multistep Enzyme Catalyzed Reactions for Unnatural Amino Acids

  • Protocol
  • First Online:
Unnatural Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 794))

Abstract

The use of unnatural amino acids, particularly synthetic α-amino acids, for modern drug discovery research requires the availability of enantiomerically pure isomers. Starting from a racemate, one single enantiomer can be obtained using a deracemization process. The two more common strategies of deracemization are those obtained by stereoinversion and by dynamic kinetic resolution. Both techniques will be here described using as a substrate the d,l-3-(2-naphthyl)-alanine, a non-natural amino acid: the first one employing a multi-enzymatic redox system, the second one combining an hydrolytic enzyme together with a base-catalyzed substrate racemization. In both cases, the final product, l-3-(2-naphthyl)alanine, is recovered with good yield and excellent enantiomeric excess.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Senten K, Van der Veken P, De Meester I et al. (2003) Design, synthesis, and SAR of potent and selective dipeptide-derived inhibitors for dipeptidyl peptidases. J Med Chem 46, 5005–5014.

    Article  PubMed  CAS  Google Scholar 

  2. Wang L and Schultz P G (2005) Expanding the genetic code. Angew Chem Int Ed Engl 44, 34–66.

    Article  CAS  Google Scholar 

  3. Sun H, Nikolovska-Coleska Z, Yang C Y et al. (2004) Structure-based design of potent, conformationally constrained Smac mimetics. J Am Chem Soc 126, 16686–16687.

    Article  PubMed  CAS  Google Scholar 

  4. Ley S V and Priour A (2002) Total synthesis of the cyclic peptide argyrin B. Eur J Org Chem 23, 3995–4004.

    Article  Google Scholar 

  5. Tanaka M (2007) Design and synthesis of chiral alpha,alpha-disubstituted amino acids and conformational study of their oligopeptides. Chem Pharm Bull 55, 349–358.

    Article  PubMed  CAS  Google Scholar 

  6. Schneider J P and Kelly J W (1995) Templates that induce alpha-helical, beta-sheet, and loop conformations. Chem Rev 95, 2169–2187.

    Article  CAS  Google Scholar 

  7. Patel R N (2000) Microbial/enzymatic synthesis of chiral drug intermediates. Adv Appl Microbiol 47, 33–78.

    Article  PubMed  CAS  Google Scholar 

  8. Leuchtenberger W, Huthmacher K, and Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biot 69, 1–8.

    Article  CAS  Google Scholar 

  9. Taylor P P, Pantaleone D P, Senkpeil R F et al. (1998) Novel biosynthetic approaches to the production of unnatural amino acids using transaminases. Trends Biotechnol 16, 412–418.

    Article  PubMed  CAS  Google Scholar 

  10. Gruber C C, Lavandera I, Faber K et al. (2006) From a racemate to a single enantiomer: Deracemization by stereoinversion. Adv Synth Catal 348, 1789–1805.

    Article  CAS  Google Scholar 

  11. Curti B, Ronchi S, and Pilone M S (1992) D- and L-amino acid oxidases in: Müller F (ed.) Chemistry and biochemistry of flavoenzymes, CRC Press, Boca Raton, pp. 66–94.

    Google Scholar 

  12. Pollegioni L, Sacchi S, Caldinelli L et al. (2007) Engineering the properties of D-amino acid oxidases by a rational and a directed evolution approach. Curr Protein Pept Sci 8, 600–618.

    Article  PubMed  CAS  Google Scholar 

  13. Pollegioni L, Piubelli L, Sacchi S et al. (2007) Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64, 1373–1394.

    Article  PubMed  CAS  Google Scholar 

  14. Helaine V, Rossi J, and Bolte J (1999) A new access to alkyl-alpha-ketoglutaric acids, precursors of glutamic acid analogues by enzymatic transamination. Application to the synthesis of (2S,4R)-4-propyl-glutamic acid. Tetrahedron Lett 40, 6577–6580.

    Article  CAS  Google Scholar 

  15. Helaine V, Rossi J, Gefflaut T et al. (2001) Synthesis of 4,4-disubstituted L-glutamic acids by enzymatic transamination. Adv Synth Catal 343, 692–697.

    Article  CAS  Google Scholar 

  16. Caligiuri A, D’Arrigo P, Gefflaut T et al. (2006) Multistep enzyme catalysed deracemisation of 2-naphthyl alanine. Biocatal Biotransfor 24, 409–413.

    Article  CAS  Google Scholar 

  17. Fantinato S, Pollegioni L, and Pilone M S (2001) Engineering, expression and purification of a His-tagged chimeric D-amino acid oxidase from Rhodotorula gracilis. Enzyme Microb Tech 29, 407–412.

    Article  Google Scholar 

  18. Kagamiyama H and Hayashi H (2000) Branched-chain amino-acid aminotransferase of Escherichia coli. Method Enzymol 324, 103–113.

    Article  CAS  Google Scholar 

  19. Kamitori S, Hirotsu K, Higuchi T et al. (1987) Overproduction and preliminary X-ray characterization of aspartate aminotransferase from Escherichia coli. J Biochem 101, 813–816.

    Article  PubMed  CAS  Google Scholar 

  20. Morino Y, Shimada K, and Kagamiyama H (1990) Mammalian aspartate aminotransferase isozymes. From DNA to protein. Ann N Y Acad Sci 585, 32–47.

    Article  CAS  Google Scholar 

  21. Berger A, Smolarsky M, Kurn N et al. (1973) A new method for the synthesis of optically active-amino acids and their N derivatives via acylamino malonates. J Org Chem 38, 457–460.

    Article  PubMed  CAS  Google Scholar 

  22. Audia J E, Evrard D A, Murdoch G R et al. (1996) Potent, selective tetrahydro-beta-carboline antagonists of the serotonin 2B (5HT2B) contractile receptor in the rat stomach fundus. J Med Chem 39, 2773–2780.

    Article  PubMed  CAS  Google Scholar 

  23. Greenstein J P and Winitz M (1961) Chemistry of Amino Acids (Vol. 2). Wiley, New York.

    Google Scholar 

  24. Koeller K M and Wong C H (2001) Enzymes for chemical synthesis. Nature 409, 232–240.

    Article  PubMed  CAS  Google Scholar 

  25. Kazlauskas R J and Bornscheuer U T (1998) Biotransformations with lipases in: Reem H-J and Reed G (ed.) Biotechnology, Wiley-WCH, Weinheim, 37–191.

    Google Scholar 

  26. Williams J M J, Parker R J, and Neri C (2002) Enzymatic kinetic resolution in: Drauz K and Waldmann H (ed.) Enzyme Catalysis in Organic Synthesis, Wiley-VCH, Weinheim 1, 287–310.

    CAS  Google Scholar 

  27. Pellissier H (2003) Dynamic kinetic resolution. Tetrahedron 59, 8291–8327.

    Article  CAS  Google Scholar 

  28. Turner N J (2004) Enzyme catalysed deracemisation and dynamic kinetic resolution reactions. Curr. Opin. Chem. Biol. 8, 114–119.

    Article  PubMed  CAS  Google Scholar 

  29. Um P J and Drueckhammer D G (1998) Dynamic enzymatic resolution of thioesters. J Am Chem Soc 120, 5605–5610.

    Article  CAS  Google Scholar 

  30. Arosio D, Caligiuri A, D’Arrigo P et al. (2007) Chemo-enzymatic dynamic kinetic resolution of amino acid thioesters. Adv Synth Catal 349, 1345–1348.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Cost Action CM0701 “CASCAT, Cascade Chemoenzymatic Processes. New synergies between chemistry and biochemistry, WG2 Multistep deracemization of multifunctional compounds”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola D’Arrigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

D’Arrigo, P., Tessaro, D. (2012). Multistep Enzyme Catalyzed Reactions for Unnatural Amino Acids. In: Pollegioni, L., Servi, S. (eds) Unnatural Amino Acids. Methods in Molecular Biology, vol 794. Humana Press. https://doi.org/10.1007/978-1-61779-331-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-331-8_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-330-1

  • Online ISBN: 978-1-61779-331-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics