Skip to main content

Trapping and Immobilization of DNA Molecules Between Nanoelectrodes

  • Protocol
  • First Online:
DNA Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 749))

Abstract

DNA is one of the most promising molecules for nanoscale bottom-up fabrication. For both scientific studies and fabrication of devices, it is desirable to be able to manipulate DNA molecules, or self-­assembled DNA constructions, at the single unit level. Efficient methods are needed for precisely attaching the single unit to the external measurement setup or the device structure. So far, this has often been too cumbersome to achieve, and consequently most of the scientific studies are based on a statistical analysis or measurements done for a sample containing numerous molecules in liquid or in a dry state. Here, we explain a method for trapping and attaching nanoscale double-stranded DNA (dsDNA) molecules between nanoelectrodes. The method is based on dielectrophoresis and gives a high yield of trapping only single or a few molecules, which enables, for example, transport measurements at the single ­molecule level. The method has been used to trap different dsDNA fragments, sizes varying from 27 to 8,416 bp, and also DNA origami constructions. We also explain how confocal microscopy can be used to determine and optimize the trapping parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LaBean, T.H., and Li, H. (2007) Constructing novel materials with DNA. Nano Today 2, 2635.

    Google Scholar 

  2. Seeman, N. C. (2003) DNA in a material world. Nature 421, 427–431.

    Google Scholar 

  3. Aldaye, F. A., Palmer, A. L., and Sleiman, H. F. (2008) Assembling materials with DNA as the guide. Science 321, 17959.

    Google Scholar 

  4. Bidault, S., Garcia de Abajo, F. J., and Polman, A. (2008) Plasmon-based nanolenses sssembled on a well-defined DNA template. J. Am. Chem. Soc. 130, 27501.

    Google Scholar 

  5. Keren, K., Berman, R. S., Buchstab, E., Sivan, U., Braun, E. (2003) DNA-templated carbon nanotube field-effect transistor. Science 302, 13802.

    Google Scholar 

  6. Pohl, H. (1978) Dielectrophoresis the behavior of neutral matter in nonuniform electric fields. (Cambridge University Press., Cambridge.).

    Google Scholar 

  7. Burke PJ (2004) Nanodielectrophoresis: Electronic Nanotweezers. Encyclopedia of Nanoscience and Nanotechnology 6, 623–641.

    Google Scholar 

  8. Hughes, M. (2000) AC electrokinetics: applications for nanotechnology. Nanotechnology 11, 124–32.

    Google Scholar 

  9. Hölzel, R., Calander, N., Chiragwandi, Z., Willander, M. and Bier, F. F. (2005) Trapping single molecules by dielectrophoresis. Phys. Rev. Lett. 95, 128102.

    Google Scholar 

  10. Clarke, R.W., Piper, J.D., Ying, L., and Klenerman, D. (2007) Surface conductivity of biological macromolecules measured by nanopipette dielectrophoresis. Phys. Rev. Lett. 98, 198102.

    Google Scholar 

  11. Tuukkanen, S., Kuzyk, A., Toppari, J. J., Häkkinen, H., Hytönen, V. P., Niskanen, E., Rinkiö, M., and Törmä, P. (2007) Trapping of 27 bp-8 kbp DNA and immobilization of thiol-modified DNA using dielectrophoresis. Nanotechnology 18, 295204.

    Google Scholar 

  12. Tuukkanen, S., Toppari, J. J., Kuzyk, A., Hirviniemi, L., Hytönen, V. P., Ihalainen, T. and Törmä, P. (2006) Carbon nanotubes as electrodes for dielectrophoresis of DNA. Nano Lett. 6, 1339–43.

    Google Scholar 

  13. Barsotti, R. J, Vahey, M. D., Wartena, R., Chiang, Y. M., Voldman, J., and Stellacci, F. (2007) Assembly of metal nanoparticles into nanogaps. Small 3, 488–99.

    Google Scholar 

  14. Hakala, T.K., Linko, V., Eskelinen, A-P., Toppari, J. J., Kuzyk, A., Törmä. P. (2009) Field induced nanolithography for high-throughput pattern transfer. Small 5, 2683.

    Google Scholar 

  15. Vijayaraghavan, A., Blatt, S., Weissenberger, D., Oron-Carl, M., Hennrich, F., Gerthsen, D., Hahn, H., and Krupke, R (2007) Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett. 7, 1556–60.

    Google Scholar 

  16. Tuukkanen, S., Kuzyk, A., Toppari, J. J., Hytönen, V. P., Ihalainen, T., and Törmä, P. (2005) Dielectrophoresis of nanoscale double-stranded DNA and humidity effects on its elec­trical conductivity. Appl. Phys. Lett. 87, 183102.

    Google Scholar 

  17. Kuzyk, A., Yurke, B., Toppari, J.J., Linko, V., and Törmä P (2008) Dielectrophoretic trapping of DNA origami. Small 4, 447–50.

    Google Scholar 

  18. Linko, V., Paasonen, S. T., Kuzyk, A., Törmä, P., and Toppari, J. J. (2009) Characterisation of the conductance mechanisms of the DNA origami by AC impedance spectroscopy. Small 5, 2382.

    Google Scholar 

  19. Castellanos, A., Ramos, A., González, A., Green, N. G., and Morgan, H. (2003) Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J. Phys. D: Appl. Phys. 36, 2584–97.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Academy of Finland (Projects No. 117937, No. 118160, No. 115020, No. 213362) and conducted as part of a EURYI scheme program (see http://www.esf.org/euryi). A. K. thanks the National Graduate School in Nanoscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jussi Toppari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kuzyk, A., Toppari, J.J., Törmä, P. (2011). Trapping and Immobilization of DNA Molecules Between Nanoelectrodes. In: Zuccheri, G., Samorì, B. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 749. Humana Press. https://doi.org/10.1007/978-1-61779-142-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-142-0_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-141-3

  • Online ISBN: 978-1-61779-142-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics