Skip to main content

Discovery of Bacterial sRNAs by High-Throughput Sequencing

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 733))

Abstract

sRNA-Seq is an unbiased method that allows for the discovery of small noncoding RNAs in bacterial transcriptomes through direct cloning and massively parallel sequencing by synthesis. Small bacterial transcripts are enriched from a total RNA preparation and modified with 5′ and 3′ linkers that allow for downstream amplification and sequencing. This protocol includes a treatment that depletes small RNA fractions of tRNAs and 5S rRNA, thereby enriching the starting pool for non-tRNA/rRNA sequences. This protocol can be readily modified to target different RNA species for depletion or to change the size range of RNAs to be sequenced. Thus, sRNA-Seq represents a comprehensive, versatile cloning protocol that may be applicable to the cloning of small RNAs of any size range from any organisms.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gorke, B., and Vogel, J. (2008) Noncoding RNA control of the making and breaking of sugars. Genes & Development 22, 2914  –2925.

    Article  Google Scholar 

  2. Gottesman, S. (2005) Micros for microbes: non-coding regulatory RNAs in bacteria. Trends in Genetics 21, 399–  404.

    Article  PubMed  CAS  Google Scholar 

  3. Romby, P., Vandenesch, F., and Wagner, E. G. H. (2006) The role of RNAs in the regulation of virulence-gene expression. Current Opinion in Microbiology 9, 229  –236.

    Article  PubMed  CAS  Google Scholar 

  4. Aiba, H. (2007) Mechanism of RNA silencing by Hfq-binding small RNAs. Current Opinion in Microbiology 10, 134  –139.

    Article  PubMed  CAS  Google Scholar 

  5. Liu, M. Y., Gui, G. J., Wei, B. D., Preston, J. F., Oakford, L., Yuksel, U., Giedroc, D. P., and Romeo, T. (1997) The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. Journal of Biological Chemistry 272, 17502  –17510.

    Article  PubMed  CAS  Google Scholar 

  6. Wassarman, K. M., and Storz, G. (2000) 6S RNA regulates E-coli RNA polymerase activity. Cell 101, 613–  623.

    Article  PubMed  CAS  Google Scholar 

  7. Fozo, E. M., Hemm, M. R., and Storz, G. (2008) Small Toxic Proteins and the Antisense RNAs That Repress Them. Microbiology and Molecular Biology Reviews 72, 579  –589.

    Article  PubMed  CAS  Google Scholar 

  8. Kawano, M., Reynolds, A. A., Miranda-Rios, J., and Storz, G. (2005) Detection of 5′- and 3′-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli. Nucleic Acids Research 33, 1040  –1050.

    Article  PubMed  CAS  Google Scholar 

  9. Liu, J. M., Livny, J., Lawrence, M. S., Kimball, M. D., Waldor, M. K., and Camilli, A. (2009) Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Research 37, e46.

    Article  PubMed  Google Scholar 

  10. Padalon-Brauch, G., Hershberg, R., Elgrably-Weiss, M., Baruch, K., Rosenshine, I., Margalit, H., and Altuvia, S. (2008) Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Research 36, 1913  –1927.

    Article  PubMed  CAS  Google Scholar 

  11. Ruby, J. G., Jan, C., Player, C., Axtell, M. J., Lee, W., Nusbaum, C., Ge, H., and Bartel, D. P. (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C-elegans. Cell 127, 1193  –1207.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kip Bodi for writing the script for designing tRNA-depletion oligonucleotides. This work was supported by Award Number K12GM074869 (J.M.L.) and A145746 (A.C.) from the National Institute of General Medical Sciences and National Institute of Health, respectively. A.C. is a Howard Hughes Medical Institute investigator. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute Of General Medical Sciences or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Camilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liu, J.M., Camilli, A. (2011). Discovery of Bacterial sRNAs by High-Throughput Sequencing. In: Kwon, Y., Ricke, S. (eds) High-Throughput Next Generation Sequencing. Methods in Molecular Biology, vol 733. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-089-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-089-8_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-088-1

  • Online ISBN: 978-1-61779-089-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics