Skip to main content

High-Throughput Production of Gene Replacement Mutants in Neurospora crassa

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 722))

Abstract

The model filamentous fungus Neurospora crassa has been the focus of functional genomics studies for the past several years. A high-throughput gene knockout procedure has been developed and used to generate mutants for more than two-thirds of the ∼10,000 annotated N. crassa genes. Yeast recombinational cloning was incorporated as an efficient procedure to produce all knockout cassettes. N. crassa strains with the Δmus-51 or Δmus-52 deletion mutations were used as transformation recipients in order to reduce the incidence of ectopic integration and increase homologous recombination of knockout cassettes into the genome. A 96-well format was used for many steps of the procedure, including fungal transformation, isolation of homokaryons, and verification of mutants. In addition, development of software programs for primer design and restriction enzyme selection facilitated the high-throughput aspects of the overall protocol.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Shafran, H., Miyara, I., Eshed, R., Prusky, D., and Sherman, A. (2008) Development of new tools for studying gene function in fungi based on the Gateway system, Fungal Genet Biol 45, 1147–54.

    Article  PubMed  CAS  Google Scholar 

  2. Dunlap, J. C., Borkovich, K. A., Henn, M. R., Turner, G. E., Sachs, M. S., Glass, N. L., McCluskey, K., Plamann, M., Galagan, J. E., Birren, B. W., Weiss, R. L., Townsend, J. P., Loros, J. J., Nelson, M. A., Lambreghts, R., Colot, H. V., Park, G., Collopy, P., Ringelberg, C., Crew, C., Litvinkova, L., DeCaprio, D., Hood, H. M., Curilla, S., Shi, M., Crawford, M., Koerhsen, M., Montgomery, P., Larson, L., Pearson, M., Kasuga, T., Tian, C., Basturkmen, M., Altamirano, L., and Xu, J. (2007) Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. Adv Genet 57, 49–96.

    Article  PubMed  CAS  Google Scholar 

  3. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J. D., Bussey, H., Chu, A. M., Connelly, C., Davis, K., Dietrich, F., Dow, S. W., El Bakkoury, M., Foury, F., Friend, S. H., Gentalen, E., Giaever, G., Hegemann, J. H., Jones, T., Laub, M., Liao, H., Liebundguth, N., Lockhart, D. J., Lucau-Danila, A., Lussier, M., M’Rabet, N., Menard, P., Mittmann, M., Pai, C., Rebischung, C., Revuelta, J. L., Riles, L., Roberts, C. J., Ross-MacDonald, P., Scherens, B., Snyder, M., Sookhai-Mahadeo, S., Storms, R. K., Veronneau, S., Voet, M., Volckaert, G., Ward, T. R., Wysocki, R., Yen, G. S., Yu, K., Zimmermann, K., Philippsen, P., Johnston, M., and Davis, R. W. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–6.

    Article  PubMed  CAS  Google Scholar 

  4. Galagan, J. E., Calvo, S. E., Borkovich, K. A., Selker, E. U., Read, N. D., Jaffe, D., FitzHugh, W., Ma, L. J., Smirnov, S., Purcell, S., Rehman, B., Elkins, T., Engels, R., Wang, S., Nielsen, C. B., Butler, J., Endrizzi, M., Qui, D., Ianakiev, P., Bell-Pedersen, D., Nelson, M. A., Werner-Washburne, M., Selitrennikoff, C. P., Kinsey, J. A., Braun, E. L., Zelter, A., Schulte, U., Kothe, G. O., Jedd, G., Mewes, W., Staben, C., Marcotte, E., Greenberg, D., Roy, A., Foley, K., Naylor, J., Stange-Thomann, N., Barrett, R., Gnerre, S., Kamal, M., Kamvysselis, M., Mauceli, E., Bielke, C., Rudd, S., Frishman, D., Krystofova, S., Rasmussen, C., Metzenberg, R. L., Perkins, D. D., Kroken, S., Cogoni, C., Macino, G., Catcheside, D., Li, W., Pratt, R. J., Osmani, S. A., DeSouza, C. P., Glass, L., Orbach, M. J., Berglund, J. A., Voelker, R., Yarden, O., Plamann, M., Seiler, S., Dunlap, J., Radford, A., Aramayo, R., Natvig, D. O., Alex, L. A., Mannhaupt, G., Ebbole, D. J., Freitag, M., Paulsen, I., Sachs, M. S., Lander, E. S., Nusbaum, C., and Birren, B. (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–68.

    Article  PubMed  CAS  Google Scholar 

  5. Davis, R. H., and Perkins, D. D. (2002) Neurospora: A model of model microbes. Nat Rev Genet 3, 397–403.

    Article  PubMed  CAS  Google Scholar 

  6. Case, M. E., Schweizer, M., Kushner, S. R., and Giles, N. H. (1979) Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc. Natl. Acad. Sci. USA 76, 5259–63.

    Article  PubMed  CAS  Google Scholar 

  7. Chakraborty, B. N., Patterson, N. A., and Kapoor, M. (1991) An electroporation-based system for high-efficiency transformation of germinated conidia of filamentous fungi. Can J Microbiol 37, 858–63.

    Article  PubMed  CAS  Google Scholar 

  8. Davis, R. H., and deSerres, F. J. (1970) Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol. 71A, 79–143.

    Article  Google Scholar 

  9. Paietta, J. V., and Marzluf, G. A. (1985) Gene disruption by transformation in Neurospora crassa. Mol Cell Biol 5, 1554–9.

    PubMed  CAS  Google Scholar 

  10. Ninomiya, Y., Suzuki, K., Ishii, C., and Inoue, H. (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101, 12248–53.

    Article  PubMed  CAS  Google Scholar 

  11. Oldenburg, K. R., Vo, K. T., Michaelis, S., and Paddon, C. (1997) Recombination-mediated PCR- directed plasmid construction in vivo in yeast. Nucleic Acids Res 25, 451–2.

    Article  PubMed  CAS  Google Scholar 

  12. Colot, H. V., Park, G., Turner, G. E., Ringelberg, C., Crew, C. M., Litvinkova, L., Weiss, R. L., Borkovich, K. A., and Dunlap, J. C. (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA 103, 10352–7.

    Article  PubMed  CAS  Google Scholar 

  13. Hays, S., and Selker, E. (2000) Making the selectable marker bar tighter and more economical. Fungal Genet. Newsl. 47, 107.

    Google Scholar 

  14. Pall, M. L. (1993) The use of Ignite (Basta;glufosinate;phosphinothricin) to select transformants of bar-containing plasmids in Neurospora crassa. Fungal Genet. Newsl. 40, 58.

    Google Scholar 

  15. Avalos, J., Geever, R. F., and Case, M. E. (1989) Bialaphos resistance as a dominant selectable marker in Neurospora crassa. Curr Genet 16, 369–72.

    Article  PubMed  CAS  Google Scholar 

  16. Jones, C. A., Greer-Phillips, S. E., and Borkovich, K. A. (2007) The response regulator RRG-1 functions upstream of a MAPK pathway impacting asexual development, female fertility, osmotic stress and fungicide resistance in Neurospora crassa. Mol Biol Cell 18, 2123–36.

    Article  PubMed  CAS  Google Scholar 

  17. Hoffman, C. S. (2001) Preparation of yeast DNA. Curr Protoc Mol Biol Chapter 13, Unit13 11.

    Google Scholar 

  18. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  19. Ivey, F. D., Hodge, P. N., Turner, G. E., and Borkovich, K. A. (1996) The G alpha i homologue gna-1 controls multiple differentiation pathways in Neurospora crassa. Mol. Biol. Cell 7, 1283–97.

    PubMed  CAS  Google Scholar 

  20. Collopy, P. D., Colot, H. V., Park, G., Ringelberg, C., Crew, C. M., Borkovich, K. A. and Dunlap, J. C. (2010) High-throughput construction of gene deletion cassettes for generation of Neurospora crassa knockout strains. Methods in Mol. Biol. 638, 33–40.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute of General Medical Sciences grant P01 GM068087. We thank John Jones for software design and implementation of the LIMS and Gloria Turner for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. Borkovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Park, G. et al. (2011). High-Throughput Production of Gene Replacement Mutants in Neurospora crassa . In: Xu, JR., Bluhm, B. (eds) Fungal Genomics. Methods in Molecular Biology, vol 722. Humana Press. https://doi.org/10.1007/978-1-61779-040-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-040-9_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-039-3

  • Online ISBN: 978-1-61779-040-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics