Skip to main content

In Vivo Visualization of RNA Using the U1A-Based Tagged RNA System

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 714))

Abstract

mRNA transport is a widely used method to achieve the asymmetric distribution of proteins within a cell or organism. In order to understand how RNA is transported, it is essential to utilize a system that can readily detect RNA movement in live cells. The tagged RNA system has recently emerged as a feasible non-invasive solution for such purpose. In this chapter, we describe in detail the U1A-based tagged RNA system. This system coexpresses U1Ap-GFP with the RNA of interest tagged with U1A aptamers, and has been proven to effectively track RNA in vivo. In addition, we provide further applications of the system for ribonucleoprotein complex purification by TAP-tagging the U1Ap-GFP construct.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Du, T. G., Schmid, M., and Jansen, R. P. (2007) Why cells move messages: the biological functions of mRNA localization. Semin. Cell Dev. Biol. 18, 171–177.

    Article  PubMed  CAS  Google Scholar 

  2. Kloc, M., Zearfoss, N. R., and Etkin, L. D. (2002) Mechanisms of subcellular mRNA localization. Cell 108, 533–544.

    Article  PubMed  CAS  Google Scholar 

  3. St Johnston, D. (2005) Moving messages: the intracellular localization of mRNAs. Nat. Rev. Mol. Cell Biol. 6, 363–375.

    Google Scholar 

  4. Jambhekar, A., and Derisi, J. L. (2007) Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA 13, 625–42.

    Article  PubMed  CAS  Google Scholar 

  5. Martin, K.C., and Ephrussi, A. (2009) mRNA localization: gene expression in the spatial dimension. Cell 136, 719–730.

    Article  PubMed  CAS  Google Scholar 

  6. Bullock, S.L. 2007. Translocation of mRNAs by molecular motors: think complex? Semin. Cell Dev. Biol. 18, 194–201.

    Article  PubMed  CAS  Google Scholar 

  7. Gonsalvez, G. B., Urbinati, C. R., and Long, R. M. (2005) RNA localization in yeast: moving towards a mechanism. Biol. Cell 97, 75–86.

    Article  PubMed  CAS  Google Scholar 

  8. Chartrand, P., Meng, X. H., Singer, R. H., and Long, R. M. (1999) Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo. Curr. Biol. 9, 333–336.

    Article  PubMed  CAS  Google Scholar 

  9. Jansen, R. P., Dowzer, C., Michaelis, C., Galova, M., and Nasmyth, K. (1996) Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell 84, 687–697.

    Article  PubMed  CAS  Google Scholar 

  10. Böhl, F., Kruse, C., Frank, A., Ferring, D., and Jansen, R. P. (2000) She2, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4-myosin motor via She3. EMBO J. 19, 5514–5524.

    Article  PubMed  Google Scholar 

  11. Long, R.M., Gu, W., Lorimer, E., Singer, R. H., and Chartrand, P. (2000) She2p is a novel RNA-binding protein that recruits the Myo4p-She3p complex to ASH1 mRNA. EMBO J. 19, 6592–6601.

    Article  PubMed  CAS  Google Scholar 

  12. Takizawa, P. A., and Vale, R. D. (2000) The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p. Proc. Natl. Acad. Sci. USA 97, 5273–5278.

    Article  PubMed  CAS  Google Scholar 

  13. Boelens, W. C., Jansen, E. J., van Venrooij, W. J., Stripecke, R., Mattaj, I. W., and Gunderson, S. I. (1993) The human U1 snRNP-specific U1A protein inhibits polyadenylation of its own pre-mRNA. Cell 72, 881–892.

    Article  PubMed  CAS  Google Scholar 

  14. Scherly, D., Boelens, W., van Venrooij, W. J., Dathan, N. A., Hamm, J., and Mattaj, I. W. (1989) Identification of the RNA binding segment of human U1A protein and definition of its binding site on U1 snRNA. EMBO J. 8, 4163–4170.

    PubMed  CAS  Google Scholar 

  15. Kretzner, L., Krol, A., and Rosbash, M. (1990) Saccharomyces cerevisiae U1 small nuclear RNA secondary structure contains both universal and yeast specific domains. Proc. Natl. Acad. Sci. USA 87, 851–855.

    Article  PubMed  CAS  Google Scholar 

  16. Liao, X. C., Tang, J., and Rosbash, M. (1993) An enhancer screen identifies a gene that encodes the yeast U1 snRNP A protein: implications for snRNP protein function in pre-mRNA splicing. Genes Dev. 7, 419–428.

    Article  PubMed  CAS  Google Scholar 

  17. Bertrand, E., Chartrand, P., Schaefer, M., Shenoy, S. M., Singer, R. H., and Long, R. M. (1998) Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445.

    Article  PubMed  CAS  Google Scholar 

  18. Keryer-Bibens, C., Barreau, C., and Osborne, H. B. (2008) Tethering of proteins to RNAs by bacteriophage proteins. Biol. Cell 100, 125–138.

    Article  PubMed  CAS  Google Scholar 

  19. Klein Gunnewiek, J. M. T., Hussein, R. I., van Aarssen, Y., Palacios, D., de Jong, R., van Venrooij, W. J., and Gunderson, S. I. (2000) Fourteen residues of the U1 snRNP-specific U1A protein are required for homodimerization, cooperative RNA binding, and inhibition of polyadenylation. Mol. Cell Biol. 20, 2209–2217.

    Article  PubMed  CAS  Google Scholar 

  20. Coller, J., and Wickens, M. (2007) Tethered function assays: an adaptable approach to study RNA regulatory proteins. Methods Enzymol. 429, 299–321.

    Article  PubMed  CAS  Google Scholar 

  21. Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., Wilm, M., and Séraphin, B. (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24, 218–229.

    Article  PubMed  CAS  Google Scholar 

  22. Nagai, K. (1996) RNA-protein complexes. Curr. Opin. Struct. Biol. 6, 53–61.

    Article  PubMed  CAS  Google Scholar 

  23. Straight, A. F., Sedat, J. W., and Murray, A. W. (1998) Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J. Cell Biol. 143, 687–694.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Takizawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chung, S., Takizawa, P.A. (2011). In Vivo Visualization of RNA Using the U1A-Based Tagged RNA System. In: Gerst, J. (eds) RNA Detection and Visualization. Methods in Molecular Biology, vol 714. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-005-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-005-8_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-004-1

  • Online ISBN: 978-1-61779-005-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics