Skip to main content

Fluorescence Correlation Spectroscopy for the Study of Membrane Dynamics and Organization in Giant Unilamellar Vesicles

  • Protocol
  • First Online:
Liposomes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 606))

Abstract

Fluorescence correlation spectroscopy (FCS) is a powerful technique to study the lateral organization of membranes. It measures fluorescence intensity fluctuations in the single molecule regime and allows the determination of diffusion coefficients. When applied to lipid membranes, their fluidity and lipid phase can be estimated from the diffusion rates of fluorescent particles partitioned to the membrane. Here, we describe the theoretical basis of FCS and discuss the z-scan approach for measurements on lipid membranes. We also list the materials necessary for a FCS experiment on giant unilamellar vesicles (GUVs). Finally, we present simple protocols for the preparation of GUVs and the acquisition and analysis of FCS data on the vesicles, so that diffusion coefficients of fluorescent probes within lipid membranes can be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720-731

    Article  CAS  PubMed  Google Scholar 

  2. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569-572

    Article  CAS  PubMed  Google Scholar 

  3. Simons K, Vaz WLC (2004) Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 33:269-295

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Saez AJ, Schwille P (2007) Single molecule techniques for the study of membrane proteins. Appl Microb Biotechnol 76:257-266

    Article  CAS  Google Scholar 

  5. Eigen M, Rigler R (1994) Sorting single molecules - application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci U S A 91:5740-5747

    Article  CAS  PubMed  Google Scholar 

  6. Magde D, Webb WW, Elson E (1972) Thermodynamic fluctuations in a reacting system - measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705

    Article  CAS  Google Scholar 

  7. Chiantia S, Ries J, Kahya N, Schwille P (2006) Combined AFM and two-focus SFCS study of raft-exhibiting model membranes. Chem-physchem 7:2409-2418

    Article  CAS  PubMed  Google Scholar 

  8. Cordeaux Y, Briddon SJ, Alexander SP, Kellam B, Hill SJ (2008) Agonist-occupied A3 adenosine receptors exist within heterogeneous complexes in membrane microdomains of individual living cells. FASEB J 22(3):850-60

    Article  CAS  PubMed  Google Scholar 

  9. Doeven MK, van den Boggart G, Krasnikov VV, Poolman B (2008) Probing receptor-translocator interactions in the oligopeptide ABC transporter by fluorescence correlation spectroscopy. Biophys J 94(10):3956-3965

    Article  CAS  PubMed  Google Scholar 

  10. Kahya N, Scherfeld D, Bacia K, Poolman B, Schwille P (2003) Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J Biol Chem 278:28109-28115

    Article  CAS  PubMed  Google Scholar 

  11. Smithers NP, Hodgkinson CP, Cuttle M, Sale GJ (2008) Insulin-triggered repositioning of munc18c on syntaxin-4 in GLUT4 signalling. Biochem J 410:255-260

    Article  CAS  PubMed  Google Scholar 

  12. Swift JL, Burger MC, Massotte D, Dahms TE, Cramb DT (2007) Two-photon excitation fluorescence cross-correlation assay for ligand-receptor binding: cell membrane nanopatches containing the human micro-opioid receptor. Anal Chem 79:6783-6791

    Article  CAS  PubMed  Google Scholar 

  13. Bacia K, Schwille P, Kurzchalia T (2005) Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc Natl Acad Sci U S A 102:3272-3277

    Article  CAS  PubMed  Google Scholar 

  14. Kahya N, Scherfeld D, Bacia K, Schwille P (2004) Lipid domain formation and dynamics in giant unilamellar vesicles explored by fluorescence correlation spectroscopy. J Struct Biol 147:77-89

    Article  CAS  PubMed  Google Scholar 

  15. Lenne PF, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo XJ, Rigneault H, He HT, Marguet D (2006) Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25:3245-3256

    Article  CAS  PubMed  Google Scholar 

  16. Ries J, Schwille P (2008) New concepts for fluorescence correlation spectroscopy on membranes. Phys Chem Chem Phys 10(24):3487-3497

    Article  CAS  PubMed  Google Scholar 

  17. Petrov EP, Schwille P (2008) State of the art and novel trends in fluorescence correlation spec­troscopy. Springer Ser. Fluoresc. 6:145-197

    Google Scholar 

  18. Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91:1915-1924

    Article  CAS  PubMed  Google Scholar 

  19. Benda A, Benes M, Marecek V, Lhotsky A, Hermens WT, Hof M (2003) How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir 19:4120-4126

    Article  CAS  Google Scholar 

  20. Humpolickova J, Gielen E, Benda A, Fagulova V, Vercammen J, Vandeven M, Hof M, Ameloot M, Engelborghs Y (2006) Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys J 91:L23-L25

    Article  CAS  PubMed  Google Scholar 

  21. Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91:1915-1924

    Article  CAS  PubMed  Google Scholar 

  22. Chiantia S, Kahya N, Schwille P (2007) Raft domain reorganization driven by short- and long-chain ceramide: a combined AFM and FCS study. Langmuir 23:7659-7665

    Article  CAS  PubMed  Google Scholar 

  23. Petrasek Z, Schwille P (2008) Precise measurement of diffusion coefficients using scanning fluorescence correlation spectroscopy. Biophys J 94:1437-1448

    Article  CAS  PubMed  Google Scholar 

  24. Culbertson CT, Jacobson SC, Michael Ramsey J (2002) Diffusion coefficient measurements in microfluidic devices. Talanta 56:365-373

    Article  CAS  PubMed  Google Scholar 

  25. Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Gregor I, Enderlein J (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. Chemphyschem 8:433-443

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Schwille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

García-Sáez, A.J., Carrer, D.C., Schwille, P. (2010). Fluorescence Correlation Spectroscopy for the Study of Membrane Dynamics and Organization in Giant Unilamellar Vesicles. In: Weissig, V. (eds) Liposomes. Methods in Molecular Biology™, vol 606. Humana Press. https://doi.org/10.1007/978-1-60761-447-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-447-0_33

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-446-3

  • Online ISBN: 978-1-60761-447-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics