Skip to main content

An Overview of Label-Free Quantitation Methods in Proteomics by Mass Spectrometry

  • Protocol
  • First Online:
Book cover Proteome Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 604))

Abstract

Protein quantification represents an important extension to identification proteomics, enabling the comparison of protein expression across different samples or treatments. Comparative protein quantification by mass spectrometry typically employs stable isotope incorporation, but recently, comparative quantification of label-free LCn-MS proteomics data has emerged as an alternative approach. In this chapter, we provide an overview of the different approaches for extracting quantitative data from label-free LCn-MS experiments. The computational procedure for recovering the quantitative information is outlined. Examples of statistical tests used to evaluate the relevance of results are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aebersold, R., and Mann, M. (2003) Mass spectrometry-based proteomics, Nature 422, 198-207.

    Article  CAS  PubMed  Google Scholar 

  2. Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., Mize, G. J., Morris, D. R., Garvik, B. M., and Yates, J. R. (1999) Direct analysis of protein complexes using mass spectrometry, Nat. Biotechnol. 17, 676-82.

    Article  CAS  PubMed  Google Scholar 

  3. Washburn, M. P., Wolters, D., and Yates, J. R. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology, Nat. Biotechnol. 19, 242-47.

    Article  CAS  PubMed  Google Scholar 

  4. Wolters, D. A., Washburn, M. P., and Yates, J. R., III (2001) An automated multidimensional protein identification technology for shotgun proteomics, Anal. Chem. 73, 5683-90.

    Article  CAS  PubMed  Google Scholar 

  5. Annesley, T. M. (2003) Ion suppression in mass spectrometry, Clin. Chem. 49, 1041-44.

    Article  CAS  PubMed  Google Scholar 

  6. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nat. Biotechnol. 17, 994-99.

    Article  CAS  PubMed  Google Scholar 

  7. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics, Mol. Cell. Proteomics 1, 376-86.

    Article  CAS  PubMed  Google Scholar 

  8. Ong, S. E., Mittler, G., and Mann, M. (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC, Nat. Methods 1, 119-26.

    Article  CAS  PubMed  Google Scholar 

  9. Ong, S. E., Kratchmarova, I., and Mann, M. (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC), J. Proteome Res. 2, 173-81.

    Article  CAS  PubMed  Google Scholar 

  10. Cagney, G., and Emili, A. (2002) De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging, Nat. Biotechnol. 20, 163-70.

    Article  CAS  PubMed  Google Scholar 

  11. Ross, P. L., Huang, Y., Marchese, J., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents, Mol. Cell. Proteomics 3, 1154-69.

    Article  CAS  PubMed  Google Scholar 

  12. Mirgorodskaya, O., Kozmin, Y., Titov, M., Körner, R., Sönksen, C., and Roepstorff, P. (2000) Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards, Rapid Commun. Mass Spectrom. 14, 1226-32.

    Article  CAS  PubMed  Google Scholar 

  13. Bondarenko, P., Chelius, D., and Shaler, T. (2002) Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry, Anal. Chem. 74, 4741-49.

    Article  CAS  PubMed  Google Scholar 

  14. Chelius, D., and Bondarenko, P. (2002) Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry, J. Proteome Res. 1, 317-23.

    Article  CAS  PubMed  Google Scholar 

  15. Chelius, D., Zhang, T., Wang, G., and Shen, R. (2003) Global protein identification and quantification technology using two-dimensional liquid chromatography nanospray mass spectrometry, Anal. Chem. 75, 6658-65.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, W., Zhou, H., Lin, H., Roy, S., Shaler, T. A., Hill, L. R., Norton, S., Kumar, P., Anderle, M., and Becker, C. H. (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards, Anal. Chem. 75, 4818-26.

    Article  CAS  PubMed  Google Scholar 

  17. Zybailov, B., Coleman, M. K., Florens, L., and Washburn, M. P. (2005) Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling, Anal. Chem. 77, 6218-24.

    Article  CAS  PubMed  Google Scholar 

  18. Gravett, M. G., Thomas, A., Schneider, K. A., Reddy, A. P., Dasari, S., Jacob, T., Lu, X. F., Rodland, M., Pereira, L., Sadowsky, D. W., Roberts, C. T., Novy, M. J., and Nagalla, S. R. (2007) Proteomic analysis of cervical-vaginal fluid: Identification of novel biomarkers for detection of intra-amniotic infection, J. Proteome Res. 6, 89-96.

    Article  CAS  PubMed  Google Scholar 

  19. Wienkoop, S., Larrainzar, E., Niemann, M., Gonzalez, E., Lehmann, U., and Weckwerth, W. (2006) Stable isotope-free quantitative shotgun proteomics combined with sample pattern recognition for rapid diagnositics, J. Sep. Sci. 29, 2793-801.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, H. X., Qian, W. J., Chin, M. H., Petyuk, V. A., Barry, R. C., Liu, T., Gritsenko, M. A., Mottaz, H. M., Moore, R. J., Camp, D. G., Khan, A. H., Smith, D. J., and Smith, R. D. (2006) Characterization of the mouse brain proteome using global proteomic analysis complemented with cysteinyl-peptide enrichment, J. Proteome Res. 5, 361-69.

    Article  CAS  PubMed  Google Scholar 

  21. Ruth, M. C., Old, W. M., Emrick, M. A., Meyer-Arendt, K., Aveline-Wolf, L. D., Pierce, K. G., Mendoza, A. M., Sevinsky, J. R., Hamady, M., Knight, R. D., Resing, K. A., and Ahn, N. G. (2006) Analysis of membrane proteins from human chronic myelogenous leukemia cells: Comparison of extraction methods for multidimensional LC-MS/MS, J. Proteome Res. 5, 709-19.

    Article  CAS  PubMed  Google Scholar 

  22. Le Bihan, T., Goh, T., Stewart, II, Salter, A. M., Bukhman, Y. V., Dharsee, M., Ewing, R., and Wisniewski, J. R. (2006) Differential analysis of membrane proteins in mouse fore- and hindbrain using a label-free approach, J. Proteome Res. 5, 2701-10.

    Article  PubMed  Google Scholar 

  23. Kislinger, T., Cox, B., Kannan, A., Chung, C., Hu, P. Z., Ignatchenko, A., Scott, M. S., Gramolini, A. O., Morris, Q., Hallett, M. T., Rossant, J., Hughes, T. R., Frey, B., and Emili, A. (2006) Global survey of organ and organelle protein expression in mouse: Combined proteomic and transcriptomic profiling, Cell 125, 173-86.

    Article  CAS  PubMed  Google Scholar 

  24. Fang, R. H., Elias, D. A., Monroe, M. E., Shen, Y. F., McIntosh, M., Wang, P., Goddard, C. D., Callister, S. J., Moore, R. J., Gorby, Y. A., Adkins, J. N., Fredrickson, J. K., Lipton, M. S., and Smith, R. D. (2006) Differential label-free quantitative proteomic analysis of Shewanella oneidensis cultured under aerobic and suboxic conditions by accurate mass and time tag approach, Mol. Cell. Proteomics 5, 714-25.

    CAS  PubMed  Google Scholar 

  25. Cao, R., Li, X. W., Liu, Z., Peng, X., Hu, W. J., Wang, X. C., Chen, P., Xie, J. Y., and Liang, S. P. (2006) Integration of a two-phase partition method into proteomics research on rat liver plasma membrane proteins, J. Proteome Res. 5, 634-42.

    Article  CAS  PubMed  Google Scholar 

  26. Lu, P., Vogel, C., Wang, R., Yao, X., and Marcotte, E. (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation, Nat. Biotechnol. 25, 117-24.

    Article  CAS  PubMed  Google Scholar 

  27. Mallick, P., Schirle, M., Chen, S., Flory, M., Lee, H., Martin, D., Ranish, J., Raught, B., Schmitt, R., Werner, T., Kuster, B., and Aebersold, R. (2007) Computational prediction of proteotypic peptides for quantitative proteomics, Nat. Biotechnol. 25, 125-31.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, H. B., Sadygov, R. G., and Yates, J. R. (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics, Anal. Chem. 76, 4193-201.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, B., VerBerkmoes, N., Langston, M., Uberbacher, E., Hettich, R., and Samatova, N. F. (2006) Detecting differential and correlated protein expression in label-free shotgun proteomics, J. Proteome Res. 5, 2909-18.

    Article  CAS  PubMed  Google Scholar 

  30. Anderson, L., and Hunter, C. L. (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins, Mol. Cell. Proteomics 5, 573-88.

    CAS  PubMed  Google Scholar 

  31. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W., and Gygi, S. P. (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS, Proc. Natl. Acad. Sci. U. S. A. 100, 6940-45.

    Article  CAS  PubMed  Google Scholar 

  32. Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search, Anal. Chem. 74, 5383-92.

    Article  CAS  PubMed  Google Scholar 

  33. Eng, J. K., McCormack, A. L., and Yates, J. R. (1994) An approach to correlate tandem mass spectra data of peptides with amino acid sequences in a protein database, J. Am. Soc. Mass Spectrom. 5, 976.

    Article  CAS  Google Scholar 

  34. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis 20, 3551-67.

    Article  CAS  PubMed  Google Scholar 

  35. Fenyo, D. (1999) The biopolymer markup language, Bioinformatics 15, 339-40.

    Article  CAS  PubMed  Google Scholar 

  36. Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu, M., Maynard, D. M., Yang, X. Y., Shi, W. Y., and Bryant, S. H. (2004) Open mass spectrometry search algorithm, J. Proteome Res. 3, 958-64.

    Article  CAS  PubMed  Google Scholar 

  37. Tanner, S., Shu, H. J., Frank, A., Wang, L. C., Zandi, E., Mumby, M., Pevzner, P. A., and Bafna, V. (2005) InsPecT: Identification of posttranslationally modified peptides from tandem mass spectra, Anal. Chem. 77, 4626-39.

    Article  CAS  PubMed  Google Scholar 

  38. Li, X. J., Zhang, H., Ranish, J. A., and Aebersold, R. (2003) Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry, Anal. Chem. 75, 6648-57.

    Article  CAS  PubMed  Google Scholar 

  39. Nesvizhskii, A. I., Keller, A., Kolker, E., and Aebersold, R. (2003) A statistical model for identifying proteins by tandem mass spectrometry, Anal. Chem. 75, 4646-58.

    Article  CAS  PubMed  Google Scholar 

  40. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265-75.

    CAS  PubMed  Google Scholar 

  41. Bradford, M. M. (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding, Anal. Biochem. 72, 248-54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wong, J.W.H., Cagney, G. (2010). An Overview of Label-Free Quantitation Methods in Proteomics by Mass Spectrometry. In: Hubbard, S., Jones, A. (eds) Proteome Bioinformatics. Methods in Molecular Biology™, vol 604. Humana Press. https://doi.org/10.1007/978-1-60761-444-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-444-9_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-443-2

  • Online ISBN: 978-1-60761-444-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics