Skip to main content
Book cover

Proteomics pp 401–431Cite as

Bioinformatical Approaches to Detect and Analyze Protein Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 564))

Summary

Protein-protein interactions are the building blocks of cellular networks and at the heart of cellular regulation. However, their experimental identification is still a challenge.

This chapter is concerned with the determination of protein-protein interactions by bioinformatical methods. These often can operate just on sequence information. Further required information is derived from public knowledge in literature databanks and biochemical databases as well as from the sequences themselves and iterative sequence comparisons. Further tools include domain analysis, structure prediction, and genome context methods. The results are predicted binary interactions and complete interaction networks.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Galperin MY (2007) The Molecular Biology Database Collection: 2007 update. Nucleic Acids Res 35:D3–4.

    Article  PubMed  CAS  Google Scholar 

  2. Kulikova T, Akhtar R, Aldebert P, Althorpe N, Andersson M, Baldwin A, Bates K, Bhattacharyya S, Bower L, Browne P, Castro M, Cochrane G, Duggan K, Eberhardt R, Faruque N, Hoad G, Kanz C, Lee C, Leinonen R, Lin Q, Lombard V, Lopez R, Lorenc D, McWilliam H, Mukherjee G, Nardone F, Pastor MP, Plaister S, Sobhany S, Stoehr P, Vaughan R, Wu D, Zhu W, Apweiler R (2007) EMBL Nucleotide Sequence Database in 2006. Nucleic Acids Res 35:D16–20.

    Article  PubMed  CAS  Google Scholar 

  3. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2007) GenBank. Nucleic Acids Res 35:D21–5.

    Article  PubMed  CAS  Google Scholar 

  4. Tateno Y, Imanishi T, Miyazaki S, Fukami-Kobayashi K, Saitou N, Sugawara H, Gojobori T (2002) DNA Data Bank of Japan (DDBJ) for genome scale research in life science. Nucleic Acids Res 30(1):27–30.

    Article  PubMed  CAS  Google Scholar 

  5. Bairoch A, Apweiler R (1997) The SWISS-PROT protein sequence database: its relevance to human molecular medical research. J Mol Med 75(5):312–6.

    PubMed  CAS  Google Scholar 

  6. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–5.

    Article  PubMed  CAS  Google Scholar 

  7. Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, Bantoft K, Betel D, Bobechko B, Boutilier K, Burgess E, Buzadzija K, Cavero R, D’Abreo C, Donaldson I, Dorairajoo D, Dumontier MJ, Dumontier MR, Earles V, Farrall R, Feldman H, Garderman E, Gong Y, Gonzaga R, Grytsan V, Gryz E, Gu V, Haldorsen E, Halupa A, Haw R, Hrvojic A, Hurrell L, Isserlin R, Jack F, Juma F, Khan A, Kon T, Konopinsky S, Le V, Lee E, Ling S, Magidin M, Moniakis J, Montojo J, Moore S, Muskat B, Ng I, Paraiso JP, Parker B, Pintilie G, Pirone R, Salama JJ, Sgro S, Shan T, Shu Y, Siew J, Skinner D, Snyder K, Stasiuk R, Strumpf D, Tuekam B, Tao S, Wang Z, White M, Willis R, Wolting C, Wong S, Wrong A, Xin C, Yao R, Yates B, Zhang S, Zheng K, Pawson T, Ouellette BF, Hogue CW (2005) The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res 33:D418–24.

    Article  PubMed  CAS  Google Scholar 

  8. Bader GD, Betel D, Hogue CW (2000) BIND: the Biomolecular Interction Network Database. Nucleic Acids Res 28(1):235–42.

    Article  Google Scholar 

  9. Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D (2002) DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30(1):303–5.

    Article  PubMed  CAS  Google Scholar 

  10. Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucleic Acids Res 34:D270–2.

    Article  PubMed  CAS  Google Scholar 

  11. Amladi S (2003) Online Mendelian Inheritance in Man “OMIM”. Indian J Dermatol Venereol Leprol 69(6):423–4.

    PubMed  CAS  Google Scholar 

  12. Zdobnov EM, Lopez R, Apweiler R, Etzold T (2002) The EBI SRS server - recent developments. Bioinformatics 18:368–73.

    Article  PubMed  CAS  Google Scholar 

  13. Sood A, Ghosh AK (2006) Literature search using PubMed: an essential tool for practicing evidence-based medicine. J Assoc Physicians India 54:303–8.

    PubMed  CAS  Google Scholar 

  14. Perez-Iratxeta C, Bork P, Andrade MA (2001) XplorMed: a tool for exploring MEDLINE abstracts. Trends Biochem Sci 26(9):573–5.

    Article  PubMed  CAS  Google Scholar 

  15. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–402.

    Article  PubMed  CAS  Google Scholar 

  16. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the ­sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–80.

    Article  PubMed  CAS  Google Scholar 

  17. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–100.

    Article  PubMed  CAS  Google Scholar 

  18. Gribskov M, Homyak M, Edenfield J, Eisenberg D (1987) Profile scanning for three-dimensional structural patterns in protein sequences. Comput Appl Biosci 4(1):61–6.

    Google Scholar 

  19. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL (2000) The Pfam protein families database. Nucleic Acids Res 28(1):263–6.

    Article  PubMed  CAS  Google Scholar 

  20. Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res 34(Database issue):D257–60.

    Article  PubMed  CAS  Google Scholar 

  21. Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, Langendijk-Genevaux PS, Pagni M, Sigrist CJ (2006) The PROSITE database. Nucleic Acids Res 34(Database issue):D227–30.

    Article  PubMed  CAS  Google Scholar 

  22. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Buillard V, Cerutti L, Copley R, Courcelle E, Das U, Daugherty L, Dibley M, Finn R, Fleischmann W, Gough J, Haft D, Hulo N, Hunter S, Kahn D, Kanapin A, Kejariwal A, Labarga A, Langendijk-Genevaux PS, Lonsdale D, Lopez R, Letunic I, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Nikolskaya AN, Orchard S, Orengo C, Petryszak R, Selengut JD, Sigrist CJ, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2007) New developments in the InterPro database. Nucleic Acids Res 35(Database issue):D224–8.

    Article  PubMed  CAS  Google Scholar 

  23. Wheeler DL, Church DM, Edgar R, Federhen S, Helmberg W, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Suzek TO, Tatusova TA, Wagner L (2004) Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res 32: D35–40.

    Article  PubMed  CAS  Google Scholar 

  24. Durbin R, Eddy S, Krogh A, Mitchison G (1998). Biological Sequence Analysis. ­Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  25. Friedrich T, Pils B, Dandekar T, Schultz J, Muller T (2006) Modelling interaction sites in protein domains with interaction profile hidden Markov models. Bioinformatics 22(23):2851–7.

    Article  PubMed  CAS  Google Scholar 

  26. Folkers G (1995) Lock and Key - A hundred years after, Emil Fisher Commemorate Symposium, Pharmaceutica Acta Helvetiae 69:175–269.

    Article  CAS  Google Scholar 

  27. Steffen A, Kamper A, Lengauer T (2006) Flexible docking of ligands into synthetic receptors using a two-sided incremental construction algorithm. J Chem Inf Model 46(4):1695–703.

    Article  PubMed  CAS  Google Scholar 

  28. Kuntz ID, Meng EC, Shoichet BK (1994) Structure-based molecular design, Acc Chem Res 27:117–23.

    Article  CAS  Google Scholar 

  29. Nixon BT, Ronson CW, Ausubel FM (1986) Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci USA 83:7850–4.

    Article  PubMed  CAS  Google Scholar 

  30. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K, Karas D, Kel AE, Kel-Margoulis OV, Kloos DU, Land S, Lewicki-Potapov B, Michael H, Munch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S, Wingender E (2003) TRANSFAC: transcriptional regulation from patterns to profiles. Nucleic Acids Res 31(1):374–8.

    Article  PubMed  CAS  Google Scholar 

  31. Klingenhoff A, Frech K, Werner T (2002) Regulatory modules shared within gene classes as well as across gene classes can be detected by the same in silico approach. Silico Biol 2:S17–26 Electronic publication: In Silico Biol. 1, 0020.

    CAS  Google Scholar 

  32. Gaudermann P, Vogl I, Zientz E, Silva FJ, Moya A, Gross R, Dandekar T (2006) Analysis of and function predictions for previously conserved hypothetical or putative proteins in Blochmannia floridanus. BMC Microbiol 9(6):1.

    Article  Google Scholar 

  33. Berman H, Henrick K, Nakamura H, Markley JL (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35(Database issue):D301–3.

    Article  PubMed  CAS  Google Scholar 

  34. Cambridge Structural Databse (CSD) http://www.ccdc.cam.ac.uk/products/csd/

  35. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–6. doi: 10.1038/340245a0.

    Article  PubMed  CAS  Google Scholar 

  36. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–2.

    Article  PubMed  CAS  Google Scholar 

  37. Gavin AC, et al (2002).Functional organization of the yeast proteome by sytematic analysis of protein complexes. Nature 415:141–7.

    Article  PubMed  CAS  Google Scholar 

  38. von Mering Cet al. (2002) Comparative assessment of large scale datasets of protein–protein interactions. Nature 417:399–403.

    Article  PubMed  CAS  Google Scholar 

  39. Goll J, Uetz P (2006) The elusive yeast interactome. Genome Biol 7(6):223. Review.

    PubMed  Google Scholar 

  40. Krause R, von Mering C, Bork P, Dandekar T (2004) Shared components of protein complexes – versatile building blocks or biochemical artefacts? Bioessays 26(12):1333–43.

    Article  PubMed  CAS  Google Scholar 

  41. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 1:32 (Database issue):D277–80.

    Article  Google Scholar 

  42. von Kamp A, Schuster S (2006) Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 22(15):1930–1.

    Article  PubMed  CAS  Google Scholar 

  43. Schwarz R, Musch P, von Kamp A, Engels B, Schirmer H, Schuster S, Dandekar T (2005) YANA – a software tool for analyzing flux modes, gene-expression and enzyme activities. BMC Bioinformatics 6:135.

    Article  PubMed  Google Scholar 

  44. Roland Schwarz, Chunguang Liang, Christoph Kaleta, Mark Kuhnel, Eik Hoffmann, Sergei Kuznetsov, Michael Hecker, Garreth Griffith, Stefan Schuster, Thomas Dandekar (2007) Integrated network reconstruction, visualization and analysis using YANAsquare. BMC Bioinformatics 8:313 (10pp.)

    Google Scholar 

  45. BioCarta http://www.biocarta.com/genes/allPathways.asp.

  46. Kolchanov NA, Ponomarenko MP, Kel AE, Kondrakhin Yu V, Frolov AS, Kolpakov FA, Goriachkovsky TN, Kel-Margulis OV, Ananko EA, Ignatieva EV, Podkolodnaia OA, Stepanenko IL, Merkulova TI, Babenko VN, Vorobiev DG, Lavryushev SV, Ponomarenko JV, Kochetove AV, Kolesov GN, Podkolodny NL, Milanesi L, Wingender E, Heinemeier T, Solovyev VV, Overton GC (1999) GeneExpress: a WWW-oriented integrator for databases and computer systems for studying the eukaryotic gene expression. Biofizika 44(5):837–41. ML 20089649.

    PubMed  CAS  Google Scholar 

  47. Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, Lewis S, Birney E, Stein L (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33(Database issue):D428–32.

    Article  PubMed  CAS  Google Scholar 

  48. Ferreira AEN, Ponces Freire AMJ, Voit EO (2003). A quantitative model of the generation of Ne-(carboxymethyl) lysine in the Maillard reaction between collagen and glucose. Biochem J 376(Pt1):109–121.

    Google Scholar 

  49. Savageau MA, Voit EO (1987) Recasting nonlinear differential equations as S-Systems: a canonical nonlinear form. Math Biosci 87(83):115.

    Google Scholar 

  50. Timmer J, Schwarz U, Voss HU, Wardinski I, Belloni T, Hasinger G, van der Klis M, Kurths J (2000) Linear and nonlinear time series analysis of the black hole candidate Cygnus X-1. Phys Rev E 61:1342–52.

    Google Scholar 

  51. Lottaz C, Spang R (2005) Stam – a Bioconductor compliant R package for structured analysis of microarray data. BMC Bioinformatics 6:211.

    Article  PubMed  Google Scholar 

  52. Fell DA (1992) Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J 286 (Pt 2):313–30.

    PubMed  CAS  Google Scholar 

  53. von Mering C , Jensen LJ, Kuhn M, Chaffron S, Doerks T, Krüger B, Snel B, Bork P (2006) STRING 7 – recent developments in the integration and prediction of protein interactions. Nucleic Acids Res. 2007 Jan 35 (Database issue):D358–362.

    Google Scholar 

  54. Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Joure N, Huynen MA, Bork P (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 33(Database issue):D433–7.

    Article  Google Scholar 

  55. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31(1):258–61.

    Article  PubMed  CAS  Google Scholar 

  56. Jensen LJ, Lagarde J, von Mering C, Bork P (2004) ArrayProspector: a web resource of functional associations inferred from microarray expression data. Nucleic Acids Res 32 (Web Server Issue):W445–448.

    Article  PubMed  CAS  Google Scholar 

  57. Mewes HW, Frishman D, Mayer KF, Munsterkotter M, Noubibou O, Pagel P, Rattei T, Oesterheld M, Ruepp A, Stumpflen V.(2006) MIPS: analysis and annotation of proteins from whole genomes in 2005. Nucleic Acids Res 34(Database issue):D169–72.

    Article  PubMed  CAS  Google Scholar 

  58. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G.(2006) MINT: the Molecular INTeraction database. Nucleic Acids Res 35(Database issue):D572–4.

    PubMed  Google Scholar 

  59. Galperin MY, Koonin EV (2000) Who’s your neighbor? New computational approaches for functional genomics. Nat Biotechnol 18(6):609–13.

    Article  PubMed  CAS  Google Scholar 

  60. Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG, Alon U (2004) Just-in-time transcription program in metabolic pathways. Nat Genet 36(5):486–91.

    Article  PubMed  CAS  Google Scholar 

  61. Huynen M, Snel B, Lathe W 3rd, Bork P (2000) Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res 10(8):1204–10.

    Article  PubMed  CAS  Google Scholar 

  62. Dietmann S, Aguilar D, Mader M, Oesterheld M, Ruepp A, Stuempflen V, Mewes HW (2006) Resources and tools for investigating biomolecular networks in mammals. Curr Pharm Des 12(29):3723–34.

    Article  PubMed  CAS  Google Scholar 

  63. Liu Y, Kuhlman B (2006) Rosetta Design server for protein design. Nucleic Acids Res 34(Web Server issue):W235–8.

    Article  PubMed  CAS  Google Scholar 

  64. Kuhnel K, Jarchau T, Wolf E, Schlichting I, Walter U, Wittinghofer A, Strelkov SV (2004) The VASP tetramerization domain is a right-handed coiled coil based on a 15-residue repeat. Proc Natl Acad Sci U S A 101(49):17027–32.

    Article  PubMed  Google Scholar 

  65. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H, Armstrong J, Bairoch A, Cesareni G, Sherman D, Apweiler R (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32(1):D452–5.

    Article  PubMed  CAS  Google Scholar 

  66. Arjunan P, Umland T, Dyda F, Swaminathan S, Furey W, Sax M, Farrenkopf B, Gao Y, Zhang D, Jordan F (1996) Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2.3 A resolution. J Mol Biol 256(3):590–600.

    Article  PubMed  CAS  Google Scholar 

  67. Schuster, S., Fell, D. und Dandekar, T. (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nature Biotechnology 18, 326–332.

    Article  PubMed  CAS  Google Scholar 

  68. Dandekar, T., Schuster, S., Snel, B., Huynen, M. und Bork, P. (1999) Pathway alignment: application to the comparative analysis of glycolytic enzymes. Biochemical Journal 343, 115–124.

    Article  PubMed  CAS  Google Scholar 

  69. Dandekar, T. und Schmidt, S. (2004) Metabolites and Pathway flexibility. In Silico Biology, 5 (No. 0012), pp. 1–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dandekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Krüger, B., Dandekar, T. (2009). Bioinformatical Approaches to Detect and Analyze Protein Interactions. In: Reinders, J., Sickmann, A. (eds) Proteomics. Methods in Molecular Biology™, vol 564. Humana Press. https://doi.org/10.1007/978-1-60761-157-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-157-8_23

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-156-1

  • Online ISBN: 978-1-60761-157-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics