Skip to main content

Brain Innate Immune System and Its Modulation by Diet: The Role of Polyunsaturated Fatty Acids

  • Chapter
  • First Online:
Dietary Components and Immune Function

Part of the book series: Nutrition and Health ((NH))

  • 2082 Accesses

Key Points

The innate immune system of the brain is composed of microglial cells and astrocytes, which, once activated, produce proinflammatory cytokines. Proinflammatory cytokines act in the brain through specific receptors produced by brain cells and trigger behavioral modifications (sickness behavior) and cognitive and mood disorders. Aging-related neuroinflammatory processes are involved in neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) are essential nutrients provided by the diet that strongly regulate neuroinflammation and associated behavioral changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rothwell NJ, Luheshi GN (2000) Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci 23:618–625

    Article  PubMed  CAS  Google Scholar 

  2. Dantzer R (2001) Cytokine-induced sickness behavior: mechanisms and implications. Ann NY Acad Sci 933:222–234

    Article  PubMed  CAS  Google Scholar 

  3. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  PubMed  CAS  Google Scholar 

  4. Kent S, Bluthe RM, Kelley KW, Dantzer R (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13:24–28

    Article  PubMed  CAS  Google Scholar 

  5. Venters HD, Dantzer R, Kelley KW (2000) A new concept in neurodegeneration: TNFalpha is a silencer of survival signals. Trends Neurosci 23:175–180

    Article  PubMed  CAS  Google Scholar 

  6. Allan SM (2000) The role of pro- and antiinflammatory cytokines in neurodegeneration. Ann NY Acad Sci 917:84–93

    Article  PubMed  CAS  Google Scholar 

  7. Benito C, Tolon RM, Pazos MR, Nunez E, Castillo AI, Romero J (2008) Cannabinoid CB2 receptors in human brain inflammation. Br J Pharmacol 153:277–285

    Article  PubMed  CAS  Google Scholar 

  8. Lipton JM, Zhao H, Ichiyama T, Barsh GS, Catania A (1999) Mechanisms of antiinflammatory action of alpha-MSH peptides. In vivo and in vitro evidence. Ann NY Acad Sci 20:173–182

    Google Scholar 

  9. Strle K, Zhou JH, Shen WH, Broussard SR, Johnson RW, Freund GG et al (2001) Interleukin-10 in the brain. Crit Rev Immunol 21:427–449

    Article  PubMed  CAS  Google Scholar 

  10. Raper NR, Cronin FJ, Exler J (1992) Omega-3 fatty acid content of the US food supply. J Am Coll Nutr 11:304–308

    PubMed  CAS  Google Scholar 

  11. Simopoulos AP (2001) n-3 fatty acids and human health: defining strategies for public policy. Lipids 1(Suppl):S83–S89

    Article  Google Scholar 

  12. Simopoulos AP (2003) Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects. World Rev Nutr Diet 92:1–22

    Article  PubMed  CAS  Google Scholar 

  13. Calder PC (2008) The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot Essent Fatty Acids 79:101–108

    Article  PubMed  CAS  Google Scholar 

  14. Anderson GJ, Connor WE (1994) Accretion of n-3 fatty acids in the brain and retina of chicks fed a low-linolenic acid diet supplemented with docosahexaenoic acid. Am J Clin Nutr 59:1338–1346

    PubMed  CAS  Google Scholar 

  15. Champeil-Potokar G, Denis I, Goustard-Langelier B, Alessandri JM, Guesnet P, Lavialle M (2004) Astrocytes in culture require docosahexaenoic acid to restore the n-3/n-6 polyunsaturated fatty acid balance in their membrane phospholipids. J Neurosci Res 75:96–106

    Article  PubMed  CAS  Google Scholar 

  16. Rosenberger TA, Villacreses NE, Hovda JT, Bosetti F, Weerasinghe G, Wine RN et al (2004) Rat brain arachidonic acid metabolism is increased by a 6-day intracerebral ventricular infusion of bacterial lipopolysaccharide. J Neurochem 88:1168–1178

    Article  PubMed  CAS  Google Scholar 

  17. Rivest S (2001) How circulating cytokines trigger the neural circuits that control the hypothalamic-pituitary-adrenal axis. Psychoneuroendocrinology 26:761–788

    Article  PubMed  CAS  Google Scholar 

  18. Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3:216–227

    Article  PubMed  CAS  Google Scholar 

  19. Guillemin GJ, Brew BJ (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75:388–397

    Article  PubMed  CAS  Google Scholar 

  20. Kloss CU, Bohatschek M, Kreutzberg GW, Raivich G (2001) Effect of lipopolysaccharide on the morphology and integrin immunoreactivity of ramified microglia in the mouse brain and in cell culture. Exp Neurol 168:32–46

    Article  PubMed  CAS  Google Scholar 

  21. Theele DP, Streit WJ (1993) A chronicle of microglial ontogeny. Glia 7:5–8

    Article  PubMed  CAS  Google Scholar 

  22. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura Y (2002) Regulating factors for microglial activation. Biol Pharmacol Bull 25:945–953

    Article  CAS  Google Scholar 

  24. Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581

    Article  PubMed  CAS  Google Scholar 

  25. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    Article  PubMed  CAS  Google Scholar 

  26. Konsman JP, Kelley K, Dantzer R (1999) Temporal and spatial relationships between lipopolysaccharide-induced expression of Fos, interleukin-1beta and inducible nitric oxide synthase in rat brain. Neuroscience 89:535–548

    Article  PubMed  CAS  Google Scholar 

  27. Laflamme N, Rivest S (2001) Toll-like receptor 4: the missing link of the cerebral innate immune response triggered by circulating gram-negative bacterial cell wall components. FASEB J 15:155–163

    Article  PubMed  CAS  Google Scholar 

  28. Laye S, Parnet P, Goujon E, Dantzer R (1994) Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Mol Brain Res 27:157–162

    Article  PubMed  CAS  Google Scholar 

  29. Quan N, Sundar SK, Weiss JM (1994) Induction of interleukin-1 in various brain regions after peripheral and central injections of lipopolysaccharide. J Neuroimmunol 49:125–134

    Article  PubMed  CAS  Google Scholar 

  30. Kluger MJ (1991) Fever: role of pyrogens and cryogens. Physiol Rev 71:93–127

    PubMed  CAS  Google Scholar 

  31. Laflamme N, Rivest S (1999) Effects of systemic immunogenic insults and circulating proinflammatory cytokines on the transcription of the inhibitory factor kappaB alpha within specific cellular populations of the rat brain. J Neurochem 73:309–321

    Article  PubMed  CAS  Google Scholar 

  32. Chakravarty S, Herkenham M (2005) Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxemia, independent of systemic cytokines. J Neurosci 16:1788–1796

    Article  CAS  Google Scholar 

  33. Laflamme N, Echchannaoui H, Landmann R, Rivest S (2003) Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria. Eur J Immunol 33:1127–1138

    Article  PubMed  CAS  Google Scholar 

  34. Kenny EF, O’Neill LA (2008) Signaling adaptors used by Toll-like receptors: an update. Cytokine 43:342–349

    Article  PubMed  CAS  Google Scholar 

  35. O’Neill LA, Fitzgerald KA, Bowie AG (2003) The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol 24:286–290

    Article  PubMed  CAS  Google Scholar 

  36. Laflamme N, Lacroix S, Rivest S (1999) An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci 19:10923–10930

    PubMed  CAS  Google Scholar 

  37. Quan N, Whiteside M, Kim L, Herkenham M (1997) Induction of inhibitory factor kappaBalpha mRNA in the central nervous system after peripheral lipopolysaccharide administration: an in situ hybridization histochemistry study in the rat. Proc Natl Acad Sci 94:10985–10990

    Article  PubMed  CAS  Google Scholar 

  38. Eriksson C, Nobel S, Winblad B, Schultzberg M (2000) Expression of interleukin 1 alpha and beta, and interleukin 1 receptor antagonist mRNA in the rat central nervous system after peripheral administration of lipopolysaccharides. Cytokine 12:423–431

    Article  PubMed  CAS  Google Scholar 

  39. Nadjar A, Combe C, Laye S, Tridon V, Dantzer R, Amedee T et al (2003) Nuclear factor kappaB nuclear translocation as a crucial marker of brain response to interleukin-1. A study in rat and interleukin-1 type I deficient mouse. J Neurochem 87:1024–1036

    Article  PubMed  CAS  Google Scholar 

  40. Parnet P, Pousset F, Laye S (2003) NF kappa B activation in mouse pituitary: comparison of response to interleukin-1 beta and lipopolysaccharide. J Neuroendocrinol 15:304–314

    Article  PubMed  CAS  Google Scholar 

  41. O’Neill LA (2008) The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev 226:10–18

    Article  PubMed  Google Scholar 

  42. Colotta F, Dower SK, Sims JE, Mantovani A (1994) The type II decoy receptor: a novel regulatory pathway for interleukin 1. Immunol Today 15:562–566

    Article  PubMed  CAS  Google Scholar 

  43. Cunningham ET, Wada E, Carter DB, Tracey DE, Battey JF, De Souza EB (1991) Localization of interleukin-1 receptor messenger RNA in murine hippocampus. Endocrinology 128:2666–2668

    Article  PubMed  CAS  Google Scholar 

  44. Ericsson A, Liu C, Hart RP, Sawchenko PE (1995) Type 1 interleukin-1 receptor in the rat brain: distribution, regulation, and relationship to sites of IL-1-induced cellular activation. J Comp Neurol 361:681–698

    Article  PubMed  CAS  Google Scholar 

  45. Wong ML, Licinio J (1994) Localization of interleukin 1 type I receptor mRNA in rat brain. Neuroimmunomodulation 1:110–115

    Article  PubMed  CAS  Google Scholar 

  46. French RA, VanHoy RW, Chizzonite R, Zachary JF, Dantzer R, Parnet P et al (1999) Expression and localization of p80 and p68 interleukin-1 receptor proteins in the brain of adult mice. J Neuroimmunol 93:194–202

    Article  PubMed  CAS  Google Scholar 

  47. Ilyin SE, Gayle D, Flynn MC, Plata-Salaman CR (1998) Interleukin-1beta system (ligand, receptor type I, receptor accessory protein and receptor antagonist), TNF-alpha, TGF-beta1 and neuropeptide Y mRNAs in specific brain regions during bacterial LPS-induced anorexia. Brain Res Bull 45:507–515

    Article  PubMed  CAS  Google Scholar 

  48. Liu C, Chalmers D, Maki R, De Souza EB (1996) Rat homolog of mouse interleukin-1 receptor accessory protein: cloning, localization and modulation studies. J Neuroimmunol 66:41–48

    Article  PubMed  CAS  Google Scholar 

  49. Smith DE, Lipsky BP, Russell C, Ketchem RR, Kirchner J, Hensley K et al (2009) A central nervous system-restricted isoform of the interleukin-1 receptor accessory protein modulates neuronal responses to interleukin-1. Immunity 30:817–831

    Article  PubMed  CAS  Google Scholar 

  50. Hudson CA, Christophi GP, Gruber RC, Wilmore JR, Lawrence DA, Massa PT (2008) Induction of IL-33 expression and activity in central nervous system glia. J Leukoc Biol 84:631–643

    Article  PubMed  CAS  Google Scholar 

  51. Pinteaux E, Parker LC, Rothwell NJ, Luheshi GN (2002) Expression of interleukin-1 receptors and their role in interleukin-1 actions in murine microglial cells. J Neurochem 83:754–763

    Article  PubMed  CAS  Google Scholar 

  52. Costelloe C, Watson M, Murphy A, McQuillan K, Loscher C, Armstrong ME et al (2008) IL-1F5 mediates anti-inflammatory activity in the brain through induction of IL-4 following interaction with SIGIRR/TIR8. J Neurochem 105:1960–1969

    Article  PubMed  CAS  Google Scholar 

  53. Hart BL (1998) Biological basis of the behavior of sick animals. Neurosci Biobehav Rev 12:123–137

    Article  Google Scholar 

  54. Laye S, Bluthe RM, Kent S, Combe C, Medina C, Parnet P et al (1995) Subdiaphragmatic vagotomy blocks induction of IL-1 beta mRNA in mice brain in response to peripheral LPS. Am J Physiol 268:R1327–R1331

    PubMed  CAS  Google Scholar 

  55. Laye S, Gheusi G, Cremona S, Combe C, Kelley K, Dantzer R et al (2000) Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression. Am J Physiol 279:R93–R98

    CAS  Google Scholar 

  56. Kent S, Bluthe RM, Dantzer R, Hardwick AJ, Kelley KW, Rothwell NJ et al (1992) Different receptor mechanisms mediate the pyrogenic and behavioral effects of interleukin 1. Proc Natl Acad Sci 89:9117–9120

    Article  PubMed  CAS  Google Scholar 

  57. Cremona S, Goujon E, Kelley KW, Dantzer R, Parnet P (1998) Brain type I but not type II IL-1 receptors mediate the effects of IL-1 beta on behavior in mice. Am J Physiol 274:R735–R740

    PubMed  CAS  Google Scholar 

  58. Cremona S, Laye S, Dantzer R, Parnet P (1998) Blockade of brain type II interleukin-1 receptors potentiates IL1beta-induced anorexia in mice. Neurosci Lett 246:101–104

    Article  PubMed  CAS  Google Scholar 

  59. Bluthe RM, Laye S, Michaud B, Combe C, Dantzer R, Parnet P (2000) Role of interleukin-1beta and tumour necrosis factor-alpha in lipopolysaccharide-induced sickness behavior: a study with interleukin-1 type I receptor-deficient mice. Eur J Neurosci 12:4447–4456

    PubMed  CAS  Google Scholar 

  60. Laye S, Liege S, Li KS, Moze E, Neveu PJ (2001) Physiological significance of the interleukin 1 receptor accessory protein. Neuroimmunomodulation 9:225–230

    Article  PubMed  CAS  Google Scholar 

  61. Liege S, Laye S, Li KS, Moze E, Neveu PJ (2000) Interleukin 1 receptor accessory protein (IL-1RAcP) is necessary for centrally mediated neuroendocrine and immune responses to IL-1beta. J Neuroimmunol 110:134–139

    Article  PubMed  CAS  Google Scholar 

  62. Touzani O, Boutin H, LeFeuvre R, Parker L, Miller A, Luheshi G et al (2002) Interleukin-1 influences ischemic brain damage in the mouse independently of the interleukin-1 type I receptor. J Neurosci 22:38–43

    PubMed  CAS  Google Scholar 

  63. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  64. Johnson RW, Gheusi G, Segreti S, Dantzer R, Kelley KW (1997) C3H/HeJ mice are refractory to lipopolysaccharide in the brain. Brain Res 752:219–226

    Article  PubMed  CAS  Google Scholar 

  65. Segreti J, Gheusi G, Dantzer R, Kelley KW, Johnson RW (1997) Defect in interleukin-1beta secretion prevents sickness behavior in C3H/HeJ mice. Physiol Behav 61:873–878

    Article  PubMed  CAS  Google Scholar 

  66. Dvoriantchikova G, Barakat D, Brambilla R, Agudelo C, Hernandez E, Bethea JR et al (2009) Inactivation of astroglial NF-kappaB promotes survival of retinal neurons following ischemic injury. Eur J Neurosci 30:175–185

    Article  PubMed  Google Scholar 

  67. Capuron L, Dantzer R (2003) Cytokines and depression: the need for a new paradigm. Brain Behav Immun 17:S119–124

    Article  PubMed  CAS  Google Scholar 

  68. Cleeland CS, Bennett GJ, Dantzer R, Dougherty PM, Dunn AJ, Meyers CA et al (2003) Are the symptoms of cancer and cancer treatment due to a shared biologic mechanism? A cytokine-immunologic model of cancer symptoms. Cancer 97:2919–2925

    Article  PubMed  Google Scholar 

  69. Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJ, Rozemuller JM, Veerhuis R et al (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40:232–239

    Article  PubMed  CAS  Google Scholar 

  70. Gidron Y, Gilutz H, Berger R, Huleihel M (2002) Molecular and cellular interface between behavior and acute coronary syndromes. Cardiovasc Res 56:15–21

    Article  PubMed  CAS  Google Scholar 

  71. Kiecolt-Glaser JK, Glaser R (2002) Depression and immune function: central pathways to morbidity and mortality. J Psychosom Res 53:873–876

    Article  PubMed  Google Scholar 

  72. Frenois F, Moreau M, O’Connor J, Lawson M, Micon C, Lestage J, Kelley KW, Dantzer R, Castanon N (2007) Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology 32:516–531

    Article  PubMed  CAS  Google Scholar 

  73. Moreau M, André C, O’Connor JC, Dumich SA, Woods JA, Kelley KW, Dantzer R, Lestage J, Castanon N (2008) Inoculation of Bacillus Calmette-Guerin to mice induces an acute episode of sickness behavior followed by chronic depressive-like behavior. Brain Behav Immun 22:1087–1095

    Article  PubMed  CAS  Google Scholar 

  74. Liu B, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Parmacol Exp Ther 304:1–7

    Article  CAS  Google Scholar 

  75. Merrill JE, Benveniste EN (1996) Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci 19:331–338

    Article  PubMed  CAS  Google Scholar 

  76. Chopp M, Zhang RL, Chen H, Li Y, Jiang N, Rusche JR (1994) Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke 25:869–866

    Article  PubMed  CAS  Google Scholar 

  77. Dusart I, Schwab ME (1994) Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 6:712–724

    Article  PubMed  CAS  Google Scholar 

  78. Gendelman HE, Zheng J, Coulter CL, Ghorpade A, Che M, Thylin M et al (1998) Suppression of inflammatory neurotoxins by highly active antiretroviral therapy in human immunodeficiency virus-associated dementia. J Infect Dis 178:1000–1007

    Article  PubMed  CAS  Google Scholar 

  79. Martino G, Adorini L, Rieckmann P, Hillert J, Kallmann B, Comi G et al (2002) Inflammation in multiple sclerosis: the good, the bad, and the complex. Lancet Neurol 1:499–509

    Article  PubMed  Google Scholar 

  80. McGeer PL, Rogers J (1992) Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology 42:447–449

    Article  PubMed  CAS  Google Scholar 

  81. Aschner M (1998) Astrocytes as mediators of immune and inflammatory responses in the CNS. Neurotoxicology 19:269–281

    PubMed  CAS  Google Scholar 

  82. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  83. Kielian T, Esen N (2004) Effects of neuroinflammation on glia-glia gap junctional intercellular communication: a perspective. Neurochem Int 45:429–436

    Article  PubMed  CAS  Google Scholar 

  84. Nakase T, Fushiki S, Sohl G, Theis M, Willecke K, Naus CC (2003) Neuroprotective role of astrocytic gap junctions in ischemic stroke. Cell Commun Adhes 10:413–417

    PubMed  CAS  Google Scholar 

  85. Griffin DE, Moser HW, Mendoza Q, Moench TR, O’Toole S, Moser AB (1985) Identification of the inflammatory cells in the central nervous system of patients with adrenoleukodystrophy. Ann Neurol 18:660–664

    Article  PubMed  CAS  Google Scholar 

  86. Hetier E, Ayala J, Denefle P, Bousseau A, Rouget P, Mallat M et al (1988) Brain macrophages synthesize interleukin-1 and interleukin-1 mRNAs in vitro. J Neurosci Res 21:391–397

    Article  PubMed  CAS  Google Scholar 

  87. Hauser SL, Doolittle TH, Lincoln R, Brown RH, Dinarello CA (1990) Cytokine accumulations in CSF of multiple sclerosis patients: frequent detection of interleukin-1 and tumor necrosis factor but not interleukin-6. Neurology 40:1735–1739

    Article  PubMed  CAS  Google Scholar 

  88. Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J Neuropathol Exp Neurol 54:276–281

    Article  PubMed  CAS  Google Scholar 

  89. Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ et al (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci 86:7611–7615

    Article  PubMed  CAS  Google Scholar 

  90. Katafuchi T, Takaki A, Take S, Kondo T, Yoshimura M (2003) Endotoxin inhibitor blocks heat exposure-induced expression of brain cytokine mRNA in aged rats. Mol Brain Res 118:24–32

    Article  PubMed  CAS  Google Scholar 

  91. Hacham M, Argov S, White RM, Segal S, Apte RN (2002) Different patterns of interleukin-1alpha and interleukin-1beta expression in organs of normal young and old mice. Eur Cytokine Netw 13:55–65

    PubMed  CAS  Google Scholar 

  92. Lynch MA (1998) Age-related impairment in long-term potentiation in hippocampus: a role for the cytokine, interleukin-1 beta? Prog Neurobiol 56:571–589

    Article  PubMed  CAS  Google Scholar 

  93. Kanemoto K, Kawasaki J, Miyamoto T, Obayashi H, Nishimura M (2000) Interleukin (IL)1beta, IL-1alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol 47:571–574

    Article  PubMed  CAS  Google Scholar 

  94. Mrak RE, Griffin WS (2000) Interleukin-1 and the immunogenetics of Alzheimer disease. J Neuropathol Exp Neurol 59:471–476

    PubMed  CAS  Google Scholar 

  95. Nishimura M, Mizuta I, Mizuta E, Yamasaki S, Ohta M, Kuno S (2000) Influence of interleukin-1beta gene polymorphisms on age-at-onset of sporadic Parkinson’s disease. Neurosci Lett 284:73–76

    Article  PubMed  CAS  Google Scholar 

  96. Chapuis J, Hot D, Hansmannel F, Kerdraon O, Ferreira S, Hubans C et al (2009) Transcriptomic and genetic studies identify IL-33 as a candidate gene for Alzheimer’s disease. Mol Psychiatry 14(11):1004–1016

    Article  PubMed  CAS  Google Scholar 

  97. Sheng JG, Griffin WS, Royston MC, Mrak RE (1998) Distribution of interleukin-1-immunoreactive microglia in cerebral cortical layers: implications for neuritic plaque formation in Alzheimer’s disease. Neuropathol Appl Neurobiol 24:278–283

    Article  PubMed  CAS  Google Scholar 

  98. Sly LM, Krzesicki RF, Brashler JR, Buhl AE, McKinley DD, Carter DB et al (2001) Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res Bull 56:581–588

    Article  PubMed  CAS  Google Scholar 

  99. McLay RN, Kastin AJ, Zadina JE (2000) Passage of interleukin-1-beta across the blood-brain barrier is reduced in aged mice: a possible mechanism for diminished fever in aging. Neuroimmunomodulation 8:148–153

    Article  PubMed  CAS  Google Scholar 

  100. Plata-Salaman CR, Peloso E, Satinoff E (1998) Interleukin-1beta-induced fever in young and old Long-Evans rats. Am J Physiol 275:R1633–R1638

    PubMed  CAS  Google Scholar 

  101. Lynch AM, Lynch MA (2002) The age-related increase in IL-1 type I receptor in rat hippocampus is coupled with an increase in caspase-3 activation. Eur J Neurosci 15:1779–1788

    Article  PubMed  Google Scholar 

  102. Murray CA, Lynch MA (1998) Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation. J Neurosci 18:2974–2981

    PubMed  CAS  Google Scholar 

  103. Campbell VA, Segurado R, Lynch MA (1998) Regulation of intracellular Ca2+ concentration by interleukin-1beta in rat cortical synaptosomes: an age-related study. Neurobiol Aging 19:575–579

    Article  PubMed  CAS  Google Scholar 

  104. Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben-Hur T et al (2007) A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 32:1106–1115

    Article  PubMed  CAS  Google Scholar 

  105. Labrousse VF, Costes L, Aubert A, Darnaudery M, Ferreira G, Amedee T et al (2009) Impaired interleukin-1beta and c-Fos expression in the hippocampus is associated with a spatial memory deficit in P2X(7) receptor-deficient mice. PLoS One 4:e6006

    Article  PubMed  CAS  Google Scholar 

  106. Bourre JM, Dumont O, Piciotti M, Clement M, Chaudiere J, Bonneil M et al (1991) Essentiality of omega 3 fatty acids for brain structure and function. World Rev Nutr Diet 66:103–117

    PubMed  CAS  Google Scholar 

  107. O’Banion MK (1999) Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit Rev Neurobiol 13:45–82

    PubMed  Google Scholar 

  108. Chang L, Karin M (2001) Mammalian MAP kinase signaling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  109. Kozak KR, Prusakiewicz JJ, Rowlinson SW, Schneider C, Marnett LJ (2001) Amino acid determinants in cyclooxygenase-2 oxygenation of the endocannabinoid 2-arachidonylglycerol. J Biol Chem 276:30072–30077

    Article  PubMed  CAS  Google Scholar 

  110. Calder PC (2003) N-3 polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. Lipids 38:343–352

    Article  PubMed  CAS  Google Scholar 

  111. Calder PC, Grimble RF (2002) Polyunsaturated fatty acids, inflammation and immunity. Eur J Clin Nutr 56(Suppl 3):S14–S19

    Article  PubMed  CAS  Google Scholar 

  112. Zaloga GP, Marik P (2001) Lipid modulation and systemic inflammation. Crit Care Clin 17:201–217

    Article  PubMed  CAS  Google Scholar 

  113. Petroni A, Salami M, Blasevich M, Papini N, Galli C (1994) Inhibition by n-3 fatty acids of arachidonic acid metabolism in a primary culture of astroglial cells. Neurochem Res 19:1187–1193

    Article  PubMed  CAS  Google Scholar 

  114. Mingam R, Moranis A, Bluthe RM, De Smedt-Peyrusse V, Kelley KW, Guesnet P et al (2008) Uncoupling of interleukin-6 from its signaling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behavior in mice. Eur J Neurosci 28:1877–1886

    Article  PubMed  Google Scholar 

  115. De Smedt-Peyrusse V, Sargueil F, Moranis A, Harizi H, Mongrand S, Laye S (2008) Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J Neurochem 105:296–307

    Article  PubMed  CAS  Google Scholar 

  116. Bazan NG (2009) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 50:S400–S405

    Article  PubMed  CAS  Google Scholar 

  117. Bazan NG, Marcheselli VL, Cole-Edwards K (2005) Brain response to injury and neurodegeneration: endogenous neuroprotective signaling. Ann NY Acad Sci 1053:137–147

    Article  PubMed  CAS  Google Scholar 

  118. Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A et al (2007) Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 13:868–873

    Article  PubMed  CAS  Google Scholar 

  119. Serhan CN, Clish CB, Brannon J, Colgan SP, Gronert K, Chiang N (2000) Anti-microinflammatory lipid signals generated from dietary N-3 fatty acids via cyclooxygenase-2 and transcellular processing: a novel mechanism for NSAID and N-3 PUFA therapeutic actions. J Physiol Pharmacol 51:643–654

    PubMed  CAS  Google Scholar 

  120. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A et al (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817

    Article  PubMed  CAS  Google Scholar 

  121. Cooper AL, Rothwell NJ (1993) Inhibition of the thermogenic and pyrogenic responses to interleukin-1 beta in the rat by dietary N-3 fatty acid supplementation. Prostaglandins Leukot Essent Fatty Acids 49:615–626

    Article  PubMed  CAS  Google Scholar 

  122. Pomposelli JJ, Mascioli EA, Bistrian BR, Lopes SM, Blackburn GL (1989) Attenuation of the febrile response in guinea pigs by fish oil enriched diets. J Parenteral Enteral Nutr 13:136–140

    Article  CAS  Google Scholar 

  123. Kozak W, Soszynski D, Rudolph K, Conn CA, Kluger MJ (1997) Dietary n-3 fatty acids differentially affect sickness behavior in mice during local and systemic inflammation. Am J Physiol 272:R1298–R1307

    PubMed  CAS  Google Scholar 

  124. Kunkel SL, Spengler M, May MA, Spengler R, Larrick J, Remick D (1988) Prostaglandin E2 regulates macrophage-derived tumor necrosis factor gene expression. J Biol Chem 263:5380–5384

    PubMed  CAS  Google Scholar 

  125. Klir JJ, McClellan JL, Kozak W, Szelenyi Z, Wong GH, Kluger MJ (1995) Systemic but not central administration of tumor necrosis factor-alpha attenuates LPS-induced fever in rats. Am J Physiol 268:R480–R486

    PubMed  CAS  Google Scholar 

  126. Kozak W, Conn CA, Klir JJ, Wong GH, Kluger MJ (1995) TNF soluble receptor and antiserum against TNF enhance lipopolysaccharide fever in mice. Am J Physiol 269:R23–R29

    PubMed  CAS  Google Scholar 

  127. Barberger-Gateau P, Letenneur L, Deschamps V, Peres K, Dartigues JF, Renaud S (2002) Fish, meat, and risk of dementia: cohort study. Br Med J 325:932–933

    Article  Google Scholar 

  128. Kalmijn S, Launer LJ, Ott A, Witteman JC, Hofman A, Breteler MM (1997) Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol 42:776–782

    Article  PubMed  CAS  Google Scholar 

  129. Kalmijn S, van Boxtel MP, Ocke M, Verschuren WM, Kromhout D, Launer LJ (2004) Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62:275–280

    Article  PubMed  CAS  Google Scholar 

  130. McGahon B, Murray CA, Clements MP, Lynch MA (1998) Analysis of the effect of membrane arachidonic acid concentration on modulation of glutamate release by interleukin-1: an age-related study. Exp Gerontol 33:343–354

    Article  PubMed  CAS  Google Scholar 

  131. Babcock T, Helton WS, Espat NJ (2000) Eicosapentaenoic acid (EPA): an antiinflammatory omega-3 fat with potential clinical applications. Nutrition 16:1116–1118

    Article  PubMed  CAS  Google Scholar 

  132. Martin DS, Lonergan PE, Boland B, Fogarty MP, Brady M, Horrobin DF et al (2002) Apoptotic changes in the aged brain are triggered by interleukin-1beta-induced activation of p38 and reversed by treatment with eicosapentaenoic acid. J Biol Chem 277:34239–34246

    Article  PubMed  CAS  Google Scholar 

  133. Kelly A, Vereker E, Nolan Y, Brady M, Barry C, Loscher CE et al (2003) Activation of p38 plays a pivotal role in the inhibitory effect of lipopolysaccharide and interleukin-1 beta on long term potentiation in rat dentate gyrus. J Biol Chem 278:19453–19462

    Article  PubMed  CAS  Google Scholar 

  134. Nadjar A, Bluthe RM, May MJ, Dantzer R, Parnet P (2005) Inactivation of the cerebral NFkappaB pathway inhibits interleukin-1beta-induced sickness behavior and c-Fos expression in various brain nuclei. Neuropsychopharmacology 30:1492–1499

    Article  PubMed  CAS  Google Scholar 

  135. Bluthe RM, Castanon N, Pousset F, Bristow A, Ball C, Lestage J et al (1999) Central injection of IL-10 antagonizes the behavioral effects of lipopolysaccharide in rats. Psychoneuroendocrinology 24:301–311

    Article  PubMed  CAS  Google Scholar 

  136. Lynch AM, Moore M, Craig S, Lonergan PE, Martin DS, Lynch MA (2003) Analysis of interleukin-1 beta-induced cell signaling activation in rat hippocampus following exposure to gamma irradiation. Protective effect of eicosapentaenoic acid. J Biol Chem 278:51075–51084

    Article  PubMed  CAS  Google Scholar 

  137. Song C, Zhang XY, Manku M (2009) Increased phospholipase A2 activity and inflammatory response but decreased nerve growth factor expression in the olfactory bulbectomized rat model of depression: effects of chronic ethyl-eicosapentaenoate treatment. J Neurosci 29:14–22

    Article  PubMed  CAS  Google Scholar 

  138. Kavanagh T, Lonergan PE, Lynch MA (2004) Eicosapentaenoic acid and gamma-linolenic acid increase hippocampal concentrations of IL-4 and IL-10 and abrogate lipopolysaccharide-induced inhibition of long-term potentiation. Prostaglandins Leukot Essent Fatty Acids 70:391–397

    Article  PubMed  CAS  Google Scholar 

  139. Song C, Horrobin D (2004) Omega-3 fatty acid ethyl-eicosapentaenoate, but not soybean oil, attenuates memory impairment induced by central IL-1beta administration. J Lipid Res 45:1112–1121

    Article  PubMed  CAS  Google Scholar 

  140. Song C, Li X, Leonard BE, Horrobin DF (2003) Effects of dietary n-3 or n-6 fatty acids on interleukin-1beta-induced anxiety, stress, and inflammatory responses in rats. J Lipid Res 44:1984–1991

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by INRA and Conseil Général d’Aquitaine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Layé PHD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Layé, S., Duffaud, A. (2010). Brain Innate Immune System and Its Modulation by Diet: The Role of Polyunsaturated Fatty Acids. In: Watson, R., Zibadi, S., Preedy, V. (eds) Dietary Components and Immune Function. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-061-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-061-8_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-060-1

  • Online ISBN: 978-1-60761-061-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics