Skip to main content

Plasticity Underlying Multipotent Tumor Stem Cells

  • Chapter
  • First Online:
Stem Cells and Cancer

Abstract

Aggressive cancer cells manifest stem-cell-like qualities that allow them to self-renew and to derive a heterogeneous tumor. Ultimately, this multipotent phenotype facilitates metastasis and resistance to therapy. Cancer cells likely acquire and maintain multipotent phenotypes by aberrantly expressing embryonic factors, such as Nodal and Notch, which maintain pluripotency in normal embryonic stem cell types. Recent studies have shown that Nodal, an embryonic morphogen belonging to the transforming growth factor-beta (TGF-β) superfamily, is aberrantly expressed in melanoma and breast carcinoma cells. Moreover, Nodal facilitates breast cancer and melanoma tumorigenesis. During development, Nodal is regulated by the spatial and temporal expression of inhibitors such as Lefty. In aggressive cancer cells, this balance of regulatory mediators is disrupted, leading to unchecked Nodal expression. By exposing aggressive cancer cells to embryonic microenvironments, inclusive of Lefty, Nodal expression is decreased and tumorigenesis is suppressed. Embryonic stem cell-derived factors, such as Lefty, may provide therapeutic modalities that may be used to specifically differentiate and eradicate aggressive cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. Lapidot T, Sirard C, Vormoor J et al A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367(6464):645–648.

    Article  PubMed  CAS  Google Scholar 

  2. Singh SK, Hawkins C, Clarke ID et al Identification of human brain tumor initiating cells. Nature 2004; 432(7015):396–401.

    Article  PubMed  CAS  Google Scholar 

  3. Al-Hajj M, Wicha MS, ito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7):3983–3988.

    Article  PubMed  CAS  Google Scholar 

  4. Fang D, Nguyen TK, Leishear K et al A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005; 65(20):9328–9337.

    Article  PubMed  CAS  Google Scholar 

  5. Ponti D, Costa A, Zaffaroni N et al Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 2005; 65(13):5506–5511.

    Article  PubMed  CAS  Google Scholar 

  6. Sheridan C, Kishimoto H, Fuchs RK et al CD44+/. Breast Cancer Res 2006; 8(5):R59.

    Article  PubMed  Google Scholar 

  7. Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 2006; 98(24):1777–1785.

    Article  PubMed  Google Scholar 

  8. Frank NY, Margaryan A, Huang Y et al ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 2005; 65(10):4320–4333.

    Article  PubMed  CAS  Google Scholar 

  9. Schatton T, Murphy GF, Frank NY et al Identification of cells initiating human melanomas. Nature 2008; 451(7176):345–349.

    Article  PubMed  CAS  Google Scholar 

  10. Toma JG, Akhavan M, Fernandes KJ et al Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001; 3(9):778–784.

    Article  PubMed  CAS  Google Scholar 

  11. Marshman E, Booth C, Potten CS. The intestinal epithelial stem cell. Bioessays 2002; 24(1):91–98.

    Article  PubMed  Google Scholar 

  12. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414(6859):105–111.

    Article  PubMed  CAS  Google Scholar 

  13. Visvader JE, Lindeman GJ. Mammary stem cells and mammopoiesis. Cancer Res 2006; 66(20):9798–9801.

    Article  PubMed  CAS  Google Scholar 

  14. Houghton J, Stoicov C, Nomura S et al Gastric cancer originating from bone marrow-derived cells. Science 2004; 306(5701):1568–1571.

    Article  PubMed  CAS  Google Scholar 

  15. Lee J, Son MJ, Woolard K et al Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 2008; 13(1):69–80.

    Article  PubMed  CAS  Google Scholar 

  16. Krivtsov AV, Twomey D, Feng Z et al Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442(7104):818–822.

    Article  PubMed  CAS  Google Scholar 

  17. Hendrix MJ, Seftor EA, Hess AR, Seftor RE. Vasculogenic mimicry and tumor-cell plasticity: lessons from melanoma. Nat Rev Cancer 2003; 3(6):411–421.

    Article  PubMed  CAS  Google Scholar 

  18. Hendrix MJ, Seftor EA, Chu YW et al Coexpression of vimentin and keratins by human melanoma tumor cells: correlation with invasive and metastatic potential. J Natl Cancer Inst 1992; 84(3):165–174.

    Article  PubMed  CAS  Google Scholar 

  19. Hendrix MJ, Seftor EA, Hess AR, Seftor RE. Molecular plasticity of human melanoma cells. Oncogene 2003; 19;22(20):3070–3075.

    Article  Google Scholar 

  20. Hendrix MJ, Seftor EA, Seftor RE, Trevor KT. Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and increased invasive behavior. Am J Pathol 1997; 150(2):483–495.

    PubMed  CAS  Google Scholar 

  21. Hendrix MJ, Seftor EA, Meltzer PS et al Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA 2001; 98(14):8018–8023.

    Article  PubMed  CAS  Google Scholar 

  22. Hoek K, Rimm DL, Williams KR et al Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res 2004; 64(15):5270–5282.

    Article  PubMed  CAS  Google Scholar 

  23. Topczewska JM, Postovit LM, Margaryan NV et al Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 2006; 12(8):925–932.

    Article  PubMed  CAS  Google Scholar 

  24. Bittner M, Meltzer P, Chen Y et al Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 2000; 406(6795):536–540.

    Article  PubMed  CAS  Google Scholar 

  25. Weeraratna AT, Jiang Y, Hostetter G et al Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 2002; 1(3):279–288.

    Article  PubMed  CAS  Google Scholar 

  26. Balint K, Xiao M, Pinnix CC et al Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J Clin Invest 2005; 115(11):3166–3176.

    Article  PubMed  CAS  Google Scholar 

  27. Smith WC, McKendry R, Ribisi S Jr, Harland RM. A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 1995; 82(1):37–46.

    Article  PubMed  CAS  Google Scholar 

  28. Tian T, Meng AM. Nodal signals pattern vertebrate embryos. Cell Mol Life Sci 2006; 63(6):672–685.

    Article  PubMed  CAS  Google Scholar 

  29. Schier AF. Nodal signaling in vertebrate development. Annu Rev Cell Dev Biol 2003; 19:589–621.

    Article  PubMed  CAS  Google Scholar 

  30. Zhou X, Sasaki H, Lowe L, Hogan BL, Kuehn MR. Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 1993; 361(6412):543–547.

    Article  PubMed  CAS  Google Scholar 

  31. Iannaccone PM, Zhou X, Khokha M, Boucher D, Kuehn MR. Insertional mutation of a gene involved in growth regulation of the early mouse embryo. Dev Dyn 1992; 194(3):198–208.

    Article  PubMed  CAS  Google Scholar 

  32. Conlon FL, Lyons KM, Takaesu N et al A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 1994; 120(7):1919–1928.

    PubMed  CAS  Google Scholar 

  33. Toyama R, O’Connell ML, Wright CV, Kuehn MR, Dawid IB. Nodal induces ectopic goosecoid and lim1 expression and axis duplication in zebrafish. Development 1995; 121(2):383–391.

    PubMed  CAS  Google Scholar 

  34. Guzman-Ayala M, Ben-Haim N, Beck S, Constam DB. Nodal protein processing and fibroblast growth factor 4 synergize to maintain a trophoblast stem cell microenvironment. Proc Natl Acad Sci USA 2004; 101(44):15656–15660.

    Article  PubMed  CAS  Google Scholar 

  35. Mesnard D, Guzman-Ayala M, Constam DB. Nodal specifies embryonic visceral endoderm and sustains pluripotent cells in the epiblast before overt axial patterning. Development 2006; 133(13):2497–2505.

    PubMed  CAS  Google Scholar 

  36. Vallier L, Reynolds D, Pedersen RA. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev Biol 2004; 275(2):403–421.

    Article  PubMed  CAS  Google Scholar 

  37. Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 2005; 118:4495–4509.

    Article  PubMed  CAS  Google Scholar 

  38. James D, Levine AJ, Besser D, Hemmati-Brivanlou A. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 2005; 132(6):1273–1282.

    Article  PubMed  CAS  Google Scholar 

  39. Postovit LM, Margaryan NV, Seftor EA et al Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells. Proc Natl Acad Sci USA 2008; 105:4329–4334.

    Article  PubMed  CAS  Google Scholar 

  40. Yeo C, Whitman M. Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol Cell 2001; 7(5):949–957.

    Article  PubMed  CAS  Google Scholar 

  41. Bianco C, Adkins HB, Wechselberger C et al Cripto-1 activates nodal- and ALK4-dependent and independent signaling pathways in mammary epithelial Cells. Mol Cell Biol 2002; 22(8):2586–2597.

    Article  PubMed  CAS  Google Scholar 

  42. Liguori G, Tucci M, Montuori N et al Characterization of the mouse Tdgf1 gene and Tdgf pseudogenes. Mamm Genome 1996; 7(5):344–348.

    Article  PubMed  CAS  Google Scholar 

  43. Ding J, Yang L, Yan YT et al Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature 1998; 395(6703):702–707.

    Article  PubMed  CAS  Google Scholar 

  44. Reissmann E, Jornvall H, Blokzijl A et al The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes Dev 2001; 15(15):2010–2022.

    Article  PubMed  CAS  Google Scholar 

  45. Ben-Haim N, Lu C, Guzman-Ayala M et al The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev Cell 2006; 11(3):313–323.

    Article  PubMed  CAS  Google Scholar 

  46. Liguori GL, Borges AC, D’Andrea D et al Cripto-independent Nodal signaling promotes positioning of the A-P axis in the early mouse embryo. Dev Biol 2007; 315:280–289.

    Article  PubMed  Google Scholar 

  47. Gong YP, Yarrow PM, Carmalt HL et al Overexpression of Cripto and its prognostic significance in breast cancer: A study with long-term survival. Eur J Surg Oncol 2006; 33(4):438–43.

    PubMed  Google Scholar 

  48. Bianco C, Strizzi L, Mancino M et al Identification of cripto-1 as a novel serologic marker for breast and colon cancer. Clin Cancer Res 2006; 12(17):5158–5164.

    Article  PubMed  CAS  Google Scholar 

  49. Adewumi O, Aflatoonian B, hrlund-Richter L et al Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 2007; 25(7):803–816.

    Article  PubMed  CAS  Google Scholar 

  50. Minchiotti G. Nodal-dependant Cripto signaling in ES cells: from stem cells to tumor biology. Oncogene 2005; 24(37):5668–5675.

    Article  PubMed  CAS  Google Scholar 

  51. Strizzi L, Bianco C, Normanno N et al Epithelial mesenchymal transition is a characteristic of hyperplasias and tumors in mammary gland from MMTV-Cripto-1 transgenic mice. J Cell Physiol 2004; 201(2):266–276.

    Article  PubMed  CAS  Google Scholar 

  52. Normanno N, De LA, Bianco C et al Cripto-1 overexpression leads to enhanced invasiveness and resistance to anoikis in human MCF-7 breast cancer cells. J Cell Physiol 2004; 198(1):31–39.

    Article  PubMed  CAS  Google Scholar 

  53. Tabibzadeh S, Hemmati-Brivanlou A. Lefty at the crossroads of “stemness” and differentiative events. Stem Cells 2006; 24(9):1998–2006.

    Article  PubMed  CAS  Google Scholar 

  54. Sato N, Sanjuan IM, Heke M, Uchida M, Naef F, Brivanlou AH. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol 2003; 260(2):404–413.

    Article  PubMed  CAS  Google Scholar 

  55. Ulloa L, Creemers JW, Roy S, Liu S, Mason J, Tabibzadeh S. Lefty proteins exhibit unique processing and activate the MAPK pathway. J Biol Chem 2001; 276(24):21387–21396.

    Article  PubMed  CAS  Google Scholar 

  56. Tang M, Mikhailik A, Pauli I et al Decidual differentiation of stromal cells promotes Proprotein Convertase 5/6 expression and lefty processing. Endocrinology 2005; 146(12):5313–5320.

    Article  PubMed  CAS  Google Scholar 

  57. Westmoreland JJ, Takahashi S, Wright CV. Xenopus Lefty requires proprotein cleavage but not N-linked glycosylation to inhibit nodal signaling. Dev Dyn 2007; 236(8):2050–2061.

    Article  PubMed  CAS  Google Scholar 

  58. Shen MM. Nodal signaling: developmental roles and regulation. Development 2007; 134(6):1023–34.

    Article  PubMed  CAS  Google Scholar 

  59. Postovit LM, Costa FF, Bischof JM et al The commonality of plasticity underlying multipotent tumor cells and embryonic stem cells. J Cell Biochem 2007; 101(4):908–917.

    Article  PubMed  CAS  Google Scholar 

  60. Hendrix MJ, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM, Postovit LM. Reprogramming metastatic tumor cells with embryonic microenvironments. Nat Rev Cancer 2007; 7(4):246–255.

    Article  PubMed  CAS  Google Scholar 

  61. Norris DP, Robertson EJ. Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements. Genes Dev 1999; 13(12):1575–1588.

    Article  PubMed  CAS  Google Scholar 

  62. Saijoh Y, Oki S, Tanaka C et al Two nodal-responsive enhancers control left-right asymmetric expression of Nodal. Dev Dyn 2005; 232(4):1031–1036.

    Article  PubMed  CAS  Google Scholar 

  63. Vincent SD, Norris DP, Le Good JA, Constam DB, Robertson EJ. Asymmetric Nodal expression in the mouse is governed by the combinatorial activities of two distinct regulatory elements. Mech Dev 2004; 121(11):1403–1415.

    Article  PubMed  CAS  Google Scholar 

  64. Raya A, Kawakami Y, Rodriguez-Esteban C et al Notch activity induces Nodal expression and mediates the establishment of left-right asymmetry in vertebrate embryos. Genes Dev 2003; 17(10):1213–1218.

    Article  PubMed  CAS  Google Scholar 

  65. Krebs LT, Iwai N, Nonaka S et al Notch signaling regulates left-right asymmetry determination by inducing Nodal expression. Genes Dev 2003; 17(10):1207–1212.

    Article  PubMed  CAS  Google Scholar 

  66. Besser D. Expression of nodal, lefty-a, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3. J Biol Chem 2004; 279(43):45076–45084.

    Article  PubMed  CAS  Google Scholar 

  67. Postovit LM, Seftor EA, Seftor RE, Hendrix MJ. Targeting Nodal in malignant melanoma cells. Expert Opin Ther Targets 2007; 11(4):497–505.

    Article  PubMed  CAS  Google Scholar 

  68. Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006; 7(9):678–689.

    Article  PubMed  CAS  Google Scholar 

  69. Nichols JT, Miyamoto A, Olsen SL, D’Souza B, Yao C, Weinmaster G. DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur. J Cell Biol 2007; 176(4):445–458.

    Article  PubMed  CAS  Google Scholar 

  70. Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003; 194(3):237–255.

    Article  PubMed  CAS  Google Scholar 

  71. Farnie G, Clarke RB. Mammary stem cells and breast cancer-role of Notch signalling. Stem Cell Rev 2007; 3(2):169–175.

    Article  PubMed  CAS  Google Scholar 

  72. Pinnix CC, Herlyn M. The many faces of Notch signaling in skin-derived cells. Pigment Cell Res 2007; 20(6):458–465.

    Article  PubMed  CAS  Google Scholar 

  73. Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 2003; 22(42):6598–6608.

    Article  PubMed  CAS  Google Scholar 

  74. Callahan R, Egan SE. Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia 2004; 9(2):145–163.

    Article  PubMed  Google Scholar 

  75. Farnie G, Clarke RB, Spence K et al Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst 2007; 99(8):616–627.

    Article  PubMed  CAS  Google Scholar 

  76. Gallahan D, Jhappan C, Robinson G et al Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res 1996; 56(8):1775–1785.

    PubMed  CAS  Google Scholar 

  77. Shipitsin M, Campbell LL, Argani P et al Molecular definition of breast tumor heterogeneity. Cancer Cell 2007; 11(3):259–273.

    Article  PubMed  CAS  Google Scholar 

  78. Choi WY, Giraldez AJ, Schier AF. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 2007; 318(5848):271–274.

    Article  PubMed  CAS  Google Scholar 

  79. Beck S, Le Good JA, Guzman M et al Extraembryonic proteases regulate Nodal signalling during gastrulation. Nat Cell Biol 2002; 4(12):981–985.

    Article  PubMed  CAS  Google Scholar 

  80. Le Good JA, Joubin K, Giraldez AJ et al Nodal stability determines signaling range. Curr Biol 2005; 15(1):31–36.

    Article  PubMed  CAS  Google Scholar 

  81. Gerschenson M, Graves K, Carson SD, Wells RS, Pierce GB. Regulation of melanoma by the embryonic skin. Proc Natl Acad Sci USA 1986; 83(19):7307–7310.

    Article  PubMed  CAS  Google Scholar 

  82. Podesta AH, Mullins J, Pierce GB, Wells RS. The neurula stage mouse embryo in control of neuroblastoma. Proc Natl Acad Sci USA 1984; 81(23):7608–7611.

    Article  PubMed  CAS  Google Scholar 

  83. Pierce GB, Pantazis CG, Caldwell JE, Wells RS. Specificity of the control of tumor formation by the blastocyst. Cancer Res 1982; 42(3):1082–1087.

    PubMed  CAS  Google Scholar 

  84. Dolberg DS, Bissell MJ. Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature 1984; 309(5968):552–556.

    Article  PubMed  CAS  Google Scholar 

  85. Postovit LM, Seftor EA, Seftor RE, Hendrix MJ. A 3-D model to study the epigenetic effects induced by the microenvironment of human embryonic stem cells. Stem Cells 2006; 24(3):501–505.

    Article  PubMed  CAS  Google Scholar 

  86. Abbott DE, Bailey CM, Postovit LM, Seftor EA, Margaryan NV, Hendrix MJ. The epigenetic influence of tumor and embryonic microenvironments: How different are they? Cancer Microenvironment. 2008; 1:13–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lynne-Marie Postovit or Mary J.C. Hendrix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Postovit, LM., Margaryan, N.V., Seftor, E.A., Strizzi, L., Seftor, R.E., Hendrix, M.J. (2009). Plasticity Underlying Multipotent Tumor Stem Cells. In: Teicher, B., Bagley, R. (eds) Stem Cells and Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-933-8_8

Download citation

Publish with us

Policies and ethics