Skip to main content

Therapeutic Lifestyle Change for the Prevention and Treatment of Hyperlipidemia and Coronary Artery Disease

  • Chapter
  • First Online:
Hyperlipidemia in Primary Care

Abstract

Since the earliest experimental and epidemiologic studies on the pathogenesis of atherosclerosis, diet composition and level of physical activity have been recognized as important etiological factors [1]. Despite advances from major programs on cholesterol, hypertension, obesity, and physical activity from the National Heart Lung Blood Institutes, more remains to be done. Indeed, in a recent analysis of the decline in CHD deaths from 1980 through 2000, approximately 44% of the decline was attributed to changes in risk factors such as total cholesterol, systolic blood pressure (BP), smoking prevalence, and physical inactivity. However, these reductions were partially offset by increases in the body mass index (BMI) and the prevalence of diabetes (DM) [2]. Although CHD with rare exceptions is an adult disease, we are reminded that the precursors of atherosclerosis are present in the young. Data from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study, an autopsy study of individuals aged 15–34 years, showed that early atherosclerosis can be found in the abdominal aorta just proximal to the bifurcation and in the coronary arteries [3]. Metabolic risk factors such as triglycerides, smoking, low high-density lipoprotein cholesterol (HDL-C), high non-HDL-C, blood pressure, and BMI are associated with this initial atherosclerosis and are also predictive of early intimal thickening in the aorta and carotid arteries in adolescents [4]. In addition, a recent report from the Coronary Artery Risk Development in Young Adults (CARDIA) study demonstrated that elevated low-density lipoprotein cholesterol (LDL-C) and other lipid abnormalities in young age are associated with greater coronary calcium in middle age [5]. With an increased prevalence of metabolic syndrome and diabetes seen in the young [6], it makes sense to target lifestyle change recommendations to all members of the family instead of just adult patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stamler J. Population-wide adverse dietary patterns: a pivotal cause of epidemic coronary heart disease/cardiovascular disease. J Am Diet Assoc. 2008;108:228–32.

    Article  PubMed  Google Scholar 

  2. Ford ES, Ajani UA, Croft JB, et al. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N Engl J Med. 2007;356:2388–98.

    Article  PubMed  CAS  Google Scholar 

  3. McGill Jr HC, McMahan CA, Herderick EE, et al. Effects of coronary heart disease risk factors on atherosclerosis of selected regions of the aorta and right coronary artery. PDAY Research Group. Pathobiological Determinants of Atherosclerosis in Youth. Arterioscler Thromb Vasc Biol. 2000;20:836–45.

    Article  PubMed  Google Scholar 

  4. McMahan CA, Gidding SS, Viikari JS, et al. Association of Pathobiologic Determinants of Atherosclerosis in Youth risk score and 15-year change in risk score with carotid artery intima-media thickness in young adults (from the Cardiovascular Risk in Young Finns Study). Am J Cardiol. 2007;100:1124–9.

    Article  PubMed  Google Scholar 

  5. Pletcher MJ, Bibbins-Domingo K, Liu K, et al. Nonoptimal lipids commonly present in young adults and coronary calcium later in life: The CARDIA (Coronary Artery Risk Development in Young Adults) Study. Ann Intern Med. 2010;153:137–46.

    PubMed  Google Scholar 

  6. Weiss R, Dziura J, Burgert TS, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350:2362–74.

    Article  PubMed  CAS  Google Scholar 

  7. American Heart Association Healthy Diet Goals. http://www.americanheart.org/presenter.jhtml?identifier=3071616. Accessed 31 May 2010.

  8. Brown MS, Goldstein JL. Biomedicine. Lowering LDL–not only how low, but how long? Science. 2006;311:1721–3.

    Article  PubMed  CAS  Google Scholar 

  9. Cohen JC, Boerwinkle E, Mosley Jr TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.

    Article  PubMed  CAS  Google Scholar 

  10. Jones P, Kafonek S, Laurora I, Hunninghake D. Comparative dose efficacy study of atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in patients with hypercholesterolemia (the CURVES study). Am J Cardiol. 1998;81:582–7.

    Article  PubMed  CAS  Google Scholar 

  11. Alberti KG, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–5.

    Article  PubMed  CAS  Google Scholar 

  12. Mann JI. Diet and risk of coronary heart disease and type 2 diabetes. Lancet. 2002;360:783–9.

    Article  PubMed  CAS  Google Scholar 

  13. Sacks FM, Katan M. Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease. Am J Med. 2002;113(Suppl 9B):13S–24.

    Article  PubMed  CAS  Google Scholar 

  14. Jenkins DJ, Kendall CW, Faulkner DA, et al. Assessment of the longer-term effects of a dietary portfolio of cholesterol-lowering foods in hypercholesterolemia. Am J Clin Nutr. 2006;83:582–91.

    PubMed  CAS  Google Scholar 

  15. Jenkins DJ, Kendall CW, Marchie A, et al. Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein. JAMA. 2003;290:502–10.

    Article  PubMed  CAS  Google Scholar 

  16. Ornish D, Brown SE, Scherwitz LW, et al. Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet. 1990;336:129–33.

    Article  PubMed  CAS  Google Scholar 

  17. Barnard RJ, DiLauro SC, Inkeles SB. Effects of intensive diet and exercise intervention in patients taking cholesterol-lowering drugs. Am J Cardiol. 1997;79:1112–4.

    Article  PubMed  CAS  Google Scholar 

  18. Mensink RP, Zock PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77:1146–55.

    PubMed  CAS  Google Scholar 

  19. Nicholls SJ, Lundman P, Harmer JA, et al. Consumption of saturated fat impairs the anti-inflammatory properties of high-density lipoproteins and endothelial function. J Am Coll Cardiol. 2006;48:715–20.

    Article  PubMed  CAS  Google Scholar 

  20. Welsh JA, Sharma A, Abramson JL, Vaccarino V, Gillespie C, Vos MB. Caloric sweetener consumption and dyslipidemia among US adults. JAMA. 2010;303:1490–7.

    Article  PubMed  CAS  Google Scholar 

  21. Ansell BJ, Navab M, Hama S, et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation. 2003;108:2751–6.

    Article  PubMed  CAS  Google Scholar 

  22. McLaughlin T, Carter S, Lamendola C, et al. Clinical efficacy of two hypocaloric diets that vary in overweight patients with type 2 diabetes: comparison of moderate fat versus carbohydrate reductions. Diabetes Care. 2007;30:1877–9.

    Article  PubMed  CAS  Google Scholar 

  23. Grundy SM, Vega GL, Tomassini JE, Tershakovec AM. Correlation of non-high-density lipoprotein cholesterol and low-density lipoprotein cholesterol with apolipoprotein B during simvastatin  +  fenofibrate therapy in patients with combined hyperlipidemia (a subanalysis of the SAFARI trial). Am J Cardiol. 2009;104:548–53.

    Article  PubMed  CAS  Google Scholar 

  24. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.

    Article  PubMed  CAS  Google Scholar 

  25. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    Article  PubMed  CAS  Google Scholar 

  26. Franz MJ. Is there a role for the glycemic index in coronary heart disease prevention or treatment? Curr Atheroscler Rep. 2008;10:497–502.

    Article  PubMed  CAS  Google Scholar 

  27. Vega-Lopez S, Ausman LM, Griffith JL, Lichtenstein AH. Interindividual variability and intra-individual reproducibility of glycemic index values for commercial white bread. Diabetes Care. 2007;30:1412–7.

    Article  PubMed  Google Scholar 

  28. Mozaffarian D, Micha R, Wallace S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010;7:e1000252.

    Article  PubMed  Google Scholar 

  29. Kris-Etherton PM, Harris WS, Appel LJ. Omega-3 fatty acids and cardiovascular disease: new recommendations from the American Heart Association. Arterioscler Thromb Vasc Biol. 2003;23:151–2.

    Article  PubMed  CAS  Google Scholar 

  30. Jacobson TA. Role of n-3 fatty acids in the treatment of hypertriglyceridemia and cardiovascular disease. Am J Clin Nutr. 2008;87:1981S–90S.

    PubMed  CAS  Google Scholar 

  31. Burr ML, Fehily AM, Gilbert JF, et al. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet. 1989;2:757–61.

    Article  PubMed  CAS  Google Scholar 

  32. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 1999;354:447–55.

    Google Scholar 

  33. de Lorgeril M, Renaud S, Mamelle N, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343:1454–9.

    Article  PubMed  Google Scholar 

  34. de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99:779–85.

    PubMed  Google Scholar 

  35. Kris-Etherton P, Eckel RH, Howard BV, St Jeor S, Bazzarre TL. AHA Science Advisory: Lyon Diet Heart Study. Benefits of a Mediterranean-style, National Cholesterol Education Program/American Heart Association Step I Dietary Pattern on Cardiovascular Disease. Circulation. 2001;103:1823–5.

    PubMed  CAS  Google Scholar 

  36. Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–8.

    Article  PubMed  CAS  Google Scholar 

  37. Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 2009;169:659–69.

    Article  PubMed  CAS  Google Scholar 

  38. Trichopoulou A, Bamia C, Trichopoulos D. Anatomy of health effects of Mediterranean diet: Greek EPIC prospective cohort study. BMJ. 2009;338:b2337.

    Article  PubMed  Google Scholar 

  39. Mensink RP, Katan MB. Effect of dietary trans fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. N Engl J Med. 1990;323:439–45.

    Article  PubMed  CAS  Google Scholar 

  40. Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC. Trans fatty acids and cardiovascular disease. N Engl J Med. 2006;354:1601–13.

    Article  PubMed  CAS  Google Scholar 

  41. Ros E, Nunez I, Perez-Heras A, et al. A walnut diet improves endothelial function in hypercholesterolemic subjects: a randomized crossover trial. Circulation. 2004;109:1609–14.

    Article  PubMed  CAS  Google Scholar 

  42. Cortes B, Nunez I, Cofan M, et al. Acute effects of high-fat meals enriched with walnuts or olive oil on postprandial endothelial function. J Am Coll Cardiol. 2006;48:1666–71.

    Article  PubMed  CAS  Google Scholar 

  43. Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336:1117–24.

    Article  PubMed  CAS  Google Scholar 

  44. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344:3–10.

    Article  PubMed  CAS  Google Scholar 

  45. Your guide to lowering your blood pressure with DASH. http://www.nhlbi.nih.gov/health/public/heart/hbp/dash/new_dash.pdf. Accessed 2 Aug 2010.

  46. Wing RR, Hill JO. Successful weight loss maintenance. Annu Rev Nutr. 2001;21:323–41.

    Article  PubMed  CAS  Google Scholar 

  47. Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA. 2005;293:43–53.

    Article  PubMed  CAS  Google Scholar 

  48. Shai I, Schwarzfuchs D, Henkin Y, et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2008;359:229–41.

    Article  PubMed  CAS  Google Scholar 

  49. Sacks FM, Bray GA, Carey VJ, et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360:859–73.

    Article  PubMed  CAS  Google Scholar 

  50. Foster GD, Wyatt HR, Hill JO, et al. Weight and metabolic outcomes after 2 years on a low-carbohydrate versus low-fat diet: a randomized trial. Ann Intern Med. 2010;153:147–57.

    PubMed  Google Scholar 

  51. Williamson DA, Anton SD, Han H, et al. Early behavioral adherence predicts short and long-term weight loss in the POUNDS LOST study. J Behav Med. 2010;33:305–14.

    Article  PubMed  Google Scholar 

  52. Lose it! weightloss app. http://itunes.apple.com/us/app/lose-it/id297368629?mt=8. Accessed 25 July 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Stone MD, MACP, FACC, FAHA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gupta, R., Almadani, B., Stone, N. (2011). Therapeutic Lifestyle Change for the Prevention and Treatment of Hyperlipidemia and Coronary Artery Disease. In: Sorrentino, M. (eds) Hyperlipidemia in Primary Care. Current Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60327-502-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-502-6_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-501-9

  • Online ISBN: 978-1-60327-502-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics