Skip to main content

A Method for Generating Transgenic Frog Embryos

  • Protocol
Molecular Embryology

Part of the book series: METHODS IN MOLECULAR BIOLOGY™ ((MIMB,volume 461))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122:3173–3183.

    CAS  PubMed  Google Scholar 

  2. Huang H, Marsh-Armstrong N, Brown DD (1999) Metamorphosis is inhibited in transgenic Xenopus laevis tadpoles that overexpress type III deiodinase. Proc Natl Acad Sci USA 96:962–967.

    Article  CAS  PubMed  Google Scholar 

  3. Breckenridge RA, Mohun TJ, Amaya E (2001) A role for BMP signalling in heart looping morphogenesis in Xenopus. Dev Biol 232:191–203.

    Article  CAS  PubMed  Google Scholar 

  4. Hartley KO, Hardcastle Z, Friday RV, Amaya E, Papalopulu N (2001) Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation. Dev Biol 238:168–184.

    Article  CAS  PubMed  Google Scholar 

  5. Schreiber AM, Das B, Huang H, Marsh-Armstrong N, Brown DD (2001) Diversedevelopmental programs of Xenopus laevis metamorphosis are inhibited by a dominant negative thyroid hormone receptor. Proc Natl Acad Sci USA 98:10739–10744.

    Article  CAS  PubMed  Google Scholar 

  6. Hartle, KO, Nutt SL, Amaya E (2002) Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system. Proc Natl Acad Sci USA 99:1377–1382.

    Article  Google Scholar 

  7. Marsh-Armstrong N., Cai L, Brown DD (2004) Thyroid hormone controls the development of connections between the spinal cord and limbs during Xenopus laevis metamorphosis. Proc Natl Acad Sci USA 101:165–170.

    Article  CAS  PubMed  Google Scholar 

  8. Marsh-Armstrong N., Huang H, Berry DL, Brown DD (1999) Germ-line transmission of transgenes in Xenopus laevis. Proc Natl Acad Sci USA 96:14389–14393.

    Article  CAS  PubMed  Google Scholar 

  9. Nutt SL, Bronchain OJ, Hartley KO, Amaya E (2001) Comparison of morpholino based translational inhibition during the development of Xenopus laevis and Xenopus tropicalis. Genesis 30:110–113.

    Article  CAS  PubMed  Google Scholar 

  10. Byrne JA, Simonsson S, Gurdon JB (2002) From intestine to muscle: nuclear reprogramming through defective cloned embryos. Proc Natl Acad Sci USA 99:6059–6063.

    Article  CAS  PubMed  Google Scholar 

  11. Gargioli C, Slack JM (2004) Cell lineage tracing during Xenopus tail regeneration. Development 131:2669–2679.

    Article  CAS  PubMed  Google Scholar 

  12. Kuroda H, Wessely O,. Robertis EM (2004) Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via chordin, noggin, beta-catenin, and cerberus. PLoS Biol 2:E92.

    Article  PubMed  Google Scholar 

  13. Offield MF, Hirsch N, Grainger RM (2000) The development of Xenopus tropicalis trans-genic lines and their use in studying lens developmental timing in living embryos.Development 127:1789–1797.

    CAS  PubMed  Google Scholar 

  14. Chalmers AD, Welchman D, Papalopulu N (2002) Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation. Dev Cell 2:171–182.

    Article  CAS  PubMed  Google Scholar 

  15. Geng X, Xiao L, Lin GF, Hu R, Wang JH, Rupp RA, Ding X (2003) Lef/Tcf- dependent Wnt/beta-catenin signaling during Xenopus axis specification. FEBS Lett 547:1–6.

    Article  CAS  PubMed  Google Scholar 

  16. Casey ES, Tada M, Fairclough L, Wylie CC, Heasman J, Smith JC (1999) Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development. Development 126:4193–4200.

    CAS  PubMed  Google Scholar 

  17. Mani SS, Besharse JC, Knox BE (1999) Immediate upstream sequence of arrestin directs rod-specific expression in Xenopus. J Biol Chem 274:15590–15597.

    Article  CAS  PubMed  Google Scholar 

  18. Hyde CE, Old RW (2000) Regulation of the early expression of the Xenopus nodal-related 1 gene, Xnr1. Development 127:1221–1229.

    CAS  PubMed  Google Scholar 

  19. Lerchner W, Latinkic BV, Remacle JE, Huylebroeck D, Smith JC (2000) Region- specific activation of the Xenopus brachyury promoter involves active repression in ectoderm and endoderm: a study using transgenic frog embryos. Development 127:2729–2739.

    CAS  PubMed  Google Scholar 

  20. Ryffel GU, Lingott A (2000) Distinct promoter elements mediate endodermal and mesodermal expression of the HNF1alpha promoter in transgenic Xenopus. Mech Dev 90:65–75.

    Article  CAS  PubMed  Google Scholar 

  21. Sparrow DB, Cai C, Kotecha S, Latinkic B, Cooper B, Towers N, Evans SM. Mohun TJ. (2000) Regulation of the tinman homologues in Xenopus embryos. Dev Biol 227:65–79.

    Article  CAS  PubMed  Google Scholar 

  22. Polli M, Amaya E (2002) A study of mesoderm patterning through the analysis of the regulation of Xmyf-5 expression. Development 129:2917–2927.

    CAS  PubMed  Google Scholar 

  23. 23 Yang J, Mei W, Otto A, Xiao L, Tao Q, Geng X, Rupp RA, Ding X (2002) Repression through a distal TCF-3 binding site restricts Xenopus myf-5 expression in gastrula mesoderm. Mech Dev 115:79–89.

    Article  CAS  PubMed  Google Scholar 

  24. Small EM, Krieg PA (2003) Transgenic analysis of the atrialnatriuretic factor (ANF) promoter: Nkx2-5 and GATA-4 binding sites are required for atrial specific expression of ANF. Dev Biol 261:116–131.

    Article  CAS  PubMed  Google Scholar 

  25. Tanaka T, Kubota M, Shinohara K, Yasuda K, Kato JY (2003) In vivo analysis of the cyclin D1 promoter during early embryogenesis in Xenopus. Cell Struct Funct 28:165–177.

    Article  CAS  PubMed  Google Scholar 

  26. Karaulanov E, Knochel W, Niehrs C (2004) Transcriptional regulation of BMP4 synexpression in transgenic Xenopus. Embo J 23:844–856.

    Article  CAS  PubMed  Google Scholar 

  27. Sipe CW, Gruber EJ, Saha MS (2004) Short upstream region drives dynamic expression of hypoxia-inducible factor 1alpha during Xenopus development. Dev Dyn:229–238.

    Google Scholar 

  28. Beck CW, Slack JM (1999) Gut specific expression using mammalian promoters in transgenic Xenopus laevis. Mech Dev 88:221–227.

    Article  CAS  PubMed  Google Scholar 

  29. Gottgens B, Barton LM, Gilbert JG, Bench AJ, Sanchez MJ, Bahn S, Mistry S, Grafham D, McMurray A, Vaudin M, Amaya E, Bentley DR, Green AR, Sinclair AM (2000) Analysis of vertebrate SCL loci identifies conserved enhancers. Nat Biotechnol 18:181–186.

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez TA, Casey ES, Harland RM, Smith JC, Beddington RS (2001) Distinct enhancer elements control Hex expression during gastrulation and early organo- genesis. Dev Biol 234:304–316.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, T, TanYH, Fu J, Lui D, Ning Y, Jirik FR, Brenner S, Venkatesh B (2003) The regulation of retina specific expression of rhodopsin gene in vertebrates. Gene 313:189–200.

    Article  CAS  PubMed  Google Scholar 

  32. Lim W, Neff ES, Furlow JD (2004) The mouse muscle creatine kinase promoter faithfully drives reporter gene expression in transgenic Xenopus laevis. Physiol Genomics 18:79–86.

    Article  CAS  PubMed  Google Scholar 

  33. Stapleton T, Luchman A, Johnston J, Browder L, Brenner S, Venkatesh B, Jirik FR (2004) Compact intergenic regions of the pufferfish genome facilitate isolation of gene promoters: characterization of Fugu 3 -phosphoadenosine 5 -phosphosulfate synthase 2 (fPapss2) gene promoter function in transgenic Xenopus. FEBS Lett 556:59–63.

    Article  CAS  PubMed  Google Scholar 

  34. Warkman AS, Atkinson BG (2004) Amphibian cardiac troponin I gene's organization, developmental expression, and regulatory properties are different from its mammalian homologue. Dev Dyn 229:275–288.

    Article  CAS  PubMed  Google Scholar 

  35. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415.

    CAS  PubMed  Google Scholar 

  36. Chae J, Zimmerman LB, Grainger RM (2002) Inducible control of tissue- specific transgene expression in Xenopus tropicalis transgenic lines. Mech Dev 117:235–241.

    Article  CAS  PubMed  Google Scholar 

  37. Werdien D, Peiler G, Ryffel GU (2001) FLP and Cre recombinase function in Xenopus embryos. Nucleic Acids Res 29:e53–53.

    Article  CAS  PubMed  Google Scholar 

  38. Ryffel, GU, Werdien D, Turan G, Gerhards A, Goosses S, Senkel S (2003) Tagging muscle cell lineages in development and tail regeneration using Cre recombinase in transgenic Xenopus. Nucleic Acids Res 31:e44.

    Article  PubMed  Google Scholar 

  39. Murray AW (1991) Cell cycle extracts. Meth in Cell Biol 36:581–605.

    Article  CAS  Google Scholar 

  40. Schiestl RH, Petes TD (1991) Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88: 7585–7589.

    Article  CAS  PubMed  Google Scholar 

  41. Kuspa A,. Loomis WF (1992) Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc Natl Acad Sci USA 89:8803–8807.

    Article  CAS  PubMed  Google Scholar 

  42. Bronchain OJ, Hartley KO, Amaya E (1999) A gene trap approach in Xenopus. Curr Biol 9:1195–1198.

    Article  CAS  PubMed  Google Scholar 

  43. Amaya E, Offield MF, Grainger RM (1998) Frog genetics: Xenopus tropicalis jumps into the future. Trends Genet 14:253–255.

    Article  CAS  PubMed  Google Scholar 

  44. Hirsch N, Zimmerman LB, Grainger RM (2002) Xenopus, the next generation: X. tropicalis genetics and genomics. Dev Dyn 225:422–433.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jennifer Taylor and Roz Friday for comments on the manuscript. We also thank Odile Bronchain, who helped modify the protocol for Xenopus tropicalis. Enrique Amaya was a Welcome Trust senior research fellow. This work was funded by The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Ishibashi, S., Kroll, K.L., Amaya, E. (2008). A Method for Generating Transgenic Frog Embryos. In: Sharpe, P.T., Mason, I. (eds) Molecular Embryology. METHODS IN MOLECULAR BIOLOGY™, vol 461. Humana Press. https://doi.org/10.1007/978-1-60327-483-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-483-8_31

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-431-9

  • Online ISBN: 978-1-60327-483-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics