Skip to main content

Quantification of MicroRNAs, Splicing Isoforms, and Homologous mRNAs With the Invader Assay

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 488))

Summary

The understanding of physiology and pathology requires accurate quantification of intracellular concentrations of important molecules such as unique RNA species. Accurate quantification of highly homologous messenger RNAs (mRNAs) (13), alternatively spliced mRNAs (4), and the short microRNAs (miRNAs) (5,6) has been successfully achieved using the Invader assay. This method directly detects specific RNA molecules in preparations of pure total cellular RNA (1– 100 ng) or in crude cell lysate (103–104 cells) samples using an isothermal signal amplification process with a fluorescence resonance energy transfer (FRET)-based fluorescence readout. Features of the Invader assay include the ability to detect 1–10 RNA molecules per cell, to discriminate between RNAs that differ by a single base, and to precisely measure 1.2-fold changes in RNA expression. Further, an isothermal format and the ability to detect two different RNA molecules with a biplex format make the Invader assay suitable for high-throughput screening applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Eis, P. S., Olson, M. C., Takova, T., et al. (2001) An invasive cleavage assay for direct quantitation of specific RNAs. Nat. Biotechnol. 19, 673–676.

    Article  CAS  PubMed  Google Scholar 

  2. Burczynski, M. E., McMillian, M., Parker, J. B., et al. (2001) Cytochrome p450 induction in rat hepatocytes assessed by quantitative real-time reverse-transcription polymerase chain reaction and the RNA invasive cleavage assay. Drug Metab. Dispos. 29, 1243–1250.

    CAS  PubMed  Google Scholar 

  3. Mills, J. B., Rose, K. A., Sadagopan, N., Sahi, J., and de Morais, S. M. (2004) Induction of drug metabolism enzymes and MDR1 using a novel human hepato-cyte cell line. J. Pharmacol. Exp. Ther. 309, 303–309.

    Article  CAS  PubMed  Google Scholar 

  4. Wagner, E. J., Curtis, M. L., Robson, N. D., Baraniak, A. P., Eis, P. S., and Garcia-Blanco, M. A. (2003) Quantification of alternatively spliced FGFR2 RNAs using the RNA invasive cleavage assay. RNA 9, 1552–1561.

    Article  CAS  PubMed  Google Scholar 

  5. Allawi, H. T., Dahlberg, J. E., Olson, S., et al. (2004) Quantitation of microRNAs using a modified Invader assay. RNA 10, 1153–1161.

    Article  CAS  PubMed  Google Scholar 

  6. Eis, P. S., Tam, W., Sun, L., et al. (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. U. S. A. 102, 3627–3632.

    Article  CAS  PubMed  Google Scholar 

  7. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

    Article  CAS  PubMed  Google Scholar 

  8. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  9. Bartel, D. P., and Chen, C. Z. (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400.

    Article  CAS  PubMed  Google Scholar 

  10. Johnson, J. M., Castle, J., Garrett-Engele, P., et al. (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144.

    Article  CAS  PubMed  Google Scholar 

  11. Neville, M., Seltzer, R., Aizenstein, B., et al. (2002) Characterization of cyto-chrome P450 2D6 alleles using the Invader system. Biotechniques 32, S34–S43.

    Google Scholar 

  12. Ohnishi, Y., Tanaka, T., Ozaki, K., Yamada, R., Suzuki, H., and Nakamura, Y. (2001) A high-throughput SNP typing system for genome-wide association studies J. Hum. Genet. 46, 471–477.

    Article  CAS  PubMed  Google Scholar 

  13. Lyamichev, V., Mast, A. L., Hall, J. G., et al. (1999) Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucle-otide probes. Nat. Biotechnol. 17, 292–296.

    Article  CAS  PubMed  Google Scholar 

  14. Hall, J. G., Eis, P. S., Law, S. M., et al. (2000) Sensitive detection of DNA polymorphisms by the serial invasive signal amplification reaction. Proc. Natl. Acad. Sci. U. S. A. 97, 8272–8277.

    Article  CAS  PubMed  Google Scholar 

  15. de Arruda, M., Lyamichev, V. I., Eis, P. S., et al. (2002) Invader technology for DNA and RNA analysis: principles and applications. Expert Rev. Mol. Diagn. 2, 487–496.

    Article  PubMed  Google Scholar 

  16. Berggren, W. T., Takova, T., Olson, M. C., Eis, P. S., Kwiatkowski, R. W., and Smith, L. M. (2002) Multiplexed gene expression analysis using the Invader RNA assay with MALDI-TOF mass spectrometry detection. Anal. Chem. 74, 1745–1750.

    Article  CAS  PubMed  Google Scholar 

  17. Chan-Hui, P. Y., Stephens, K., Warnock, R. A., and Singh, S. (2004) Applications of eTag assay platform to systems biology approaches in molecular oncology and toxicology studies. Clin. Immunol. 111, 162–174.

    Article  CAS  PubMed  Google Scholar 

  18. Nagano, M., Yamashita, S., Hirano, K., et al. (2002) Two novel missense mutations in the CETP gene in Japanese hyperalphalipoproteinemic subjects: high-throughput assay by Invader assay. J. Lipid Res. 43, 1011–1018.

    Article  CAS  PubMed  Google Scholar 

  19. Ma, W. P., Kaiser, M. W., Lyamicheva, N., et al. (2000) RNA template-dependent 5 nuclease activity of Thermus aquaticus and Thermus thermophilusDNA poly-merases. J. Biol. Chem. 275, 24693–24700.

    Article  CAS  PubMed  Google Scholar 

  20. Kaiser, M. W., Lyamicheva, N., Ma, W., et al. (1999) A comparison of eubacte-rial and archaeal structure-specific 5 - exonucleases. J. Biol. Chem. 274, 21387–21394.

    Article  CAS  PubMed  Google Scholar 

  21. Lyamichev, V. I., Kaiser, M. W., Lyamicheva, N. E., et al. (2000) Experimental and theoretical analysis of the invasive signal amplification reaction. Biochemistry 39, 9523–9532.

    Article  CAS  PubMed  Google Scholar 

  22. Lane, M. J., Paner, T., Kashin, I., et al. (1997) The thermodynamic advantage of DNA oligonucleotide “stacking hybridization” reactions: energetics of a DNA nick. Nucleic Acids Res. 25, 611–617.

    Article  CAS  PubMed  Google Scholar 

  23. Majlessi, M., Nelson, N. C., and Becker, M. M. (1998) Advantages of 2 -O-methyl oligoribonucleotide probes for detecting RNA targets. Nucleic Acids Res. 26, 2224–2229.

    Article  CAS  PubMed  Google Scholar 

  24. Olson, M. C., Takova, T., Chehak, L., et al. (2004) Invader Assay for RNA Quantitation, Humana Press, Totowa, NJ.

    Google Scholar 

  25. Levanon, E. Y. , Eisenberg, E., Yelin, R., et al. (2004) Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005.

    Article  CAS  PubMed  Google Scholar 

  26. Bass, B. L. (2002) RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846.

    Article  CAS  PubMed  Google Scholar 

  27. Zuker, M. (2003) Mfold Web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.

    Article  CAS  PubMed  Google Scholar 

  28. Griffiths-Jones, S. (2004) The microRNA Registry. Nucleic Acids Res. 32, D109– D111.

    Article  CAS  PubMed  Google Scholar 

  29. Allawi, H. T., Dong, F., Ip, H. S., Neri, B. P., and Lyamichev, V. I. (2001) Mapping of RNA accessible sites by extension of random oligonucleotide libraries with reverse transcriptase. RNA 7, 314–327.

    Article  CAS  PubMed  Google Scholar 

  30. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. (1994) Molecular Biology of the Cell, 3rd ed., Garland, New York.

    Google Scholar 

  31. Mathews, D. H., Burkard, M. E., Freier, S. M., Wyatt, J. R., and Turner, D. H. (1999) Predicting oligonucleotide affinity to nucleic acid targets. RNA 5, 1458–1469.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge support from National Institutes of Health grants GM 63090 (to M.A. G.-B.) and GM 30220 (to J.E. Dahlberg). We thank James Dahlberg for permission to use the miR-155 microRNA data and for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Eis, P.S., Garcia-Blanco, M.A. (2008). Quantification of MicroRNAs, Splicing Isoforms, and Homologous mRNAs With the Invader Assay. In: Lin, RJ. (eds) RNA-Protein Interaction Protocols. Methods in Molecular Biology, vol 488. Humana Press. https://doi.org/10.1007/978-1-60327-475-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-475-3_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-419-7

  • Online ISBN: 978-1-60327-475-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics