Skip to main content

Introduction to Omics

  • Protocol
  • First Online:
Bioinformatics Methods in Clinical Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 593))

Abstract

Exploiting the potential of omics for clinical diagnosis, prognosis, and therapeutic purposes has currently been receiving a lot of attention. In recent years, most of the effort has been put into demonstrating the possible clinical applications of the various omics fields. The cost-effectiveness analysis has been, so far, rather neglected. The cost of omics-derived applications is still very high, but future technological improvements are likely to overcome this problem.

In this chapter, we will give a general background of the main omics fields and try to provide some examples of the most successful applications of omics that might be used in clinical diagnosis and in a therapeutic context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Valkova N, Kultz D. (2006) Biochim Biophys Acta 1764:1007–1020. http://www.etymonline.com/index.php

    PubMed  CAS  Google Scholar 

  2. Takatalo MS, Kouvonen P, Corthals G, Nyman TA, Ronnholm RH. (2006) Proteomics 6:3502–3508. http://en.wikipedia.org/wiki/-omics

    Article  PubMed  CAS  Google Scholar 

  3. Kuska B. (1998) Beer, Bethesda, and biology: how “genomics” came into being. J Natl Cancer Inst 90:93.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang JF, He SM, Cai JJ, Cao XJ, Sun RX, Fu Y, Zeng R, Gao W. (2005) Genom Proteom Bioinformat 3:231–237.

    Google Scholar 

  5. Fiers W, Contreras R, Duerinck F, et al. (1976) Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature 260:500–507.

    Article  PubMed  CAS  Google Scholar 

  6. Nowak R. (1995) Bacterial genome sequence bagged. Science 269:468–470.

    Article  PubMed  CAS  Google Scholar 

  7. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512.

    Article  PubMed  CAS  Google Scholar 

  8. Sachidanandam R, et al. (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933.

    Article  PubMed  CAS  Google Scholar 

  9. McPherson JD, Marra M, Hillier L, et al. (2001) A physical map of the human genome. Nature 409:934–941.

    Article  PubMed  CAS  Google Scholar 

  10. Venter JC, Adams MD, Myers EW, et al. (2001) The sequence of the human genome. Science 291:1304–1351.

    Article  PubMed  CAS  Google Scholar 

  11. Collins FS, Morgan M, Patrinos A. (2003) The Human Genome Project: lessons from large-scale biology. Science 300:286–290.

    Article  PubMed  CAS  Google Scholar 

  12. Arnold J, Hilton N. (2003) Genome sequencing: Revelations from a bread mould. Nature 422:821–822.

    Article  PubMed  CAS  Google Scholar 

  13. Watson JD, Crick FH. (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738.

    Article  PubMed  CAS  Google Scholar 

  14. Chong PK, Gan CS, Pham TK, Wright PC. (2006) J Proteome Res 5:1232–1240. http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html

    Article  PubMed  CAS  Google Scholar 

  15. Ashburner M. (2007) Drosophila Genomes by the Baker’s Dozen. Genetics 177:1263–1268.

    PubMed  Google Scholar 

  16. Gibson G. (2003) Microarray analysis: genome-scale hypothesis scanning. PLoS Biol 1:E15.

    Article  PubMed  CAS  Google Scholar 

  17. Nguyen DH, D’Haeseleer P. (2006) Deciphering principles of transcription regulation in eukaryotic genomes. Mol Syst Biol 2:2006.0012.

    Article  PubMed  CAS  Google Scholar 

  18. Landry CR, Oh J, Hartl DL, et al. (2006) Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes. Gene 366:343–351.

    Article  PubMed  CAS  Google Scholar 

  19. Stern S, Dror T, Stolovicki E, et al. (2007) Genome-wide transcriptional plasticity underlies cellular adaptation to novel challenge. Mol Syst Biol 3:106.

    Article  PubMed  CAS  Google Scholar 

  20. Leban G, Bratko I, Petrovic U, et al. (2005) VizRank: finding informative data projections in functional genomics by machine learning. Bioinformatics 21:413–414.

    Article  PubMed  CAS  Google Scholar 

  21. Wilkinson DJ. (2007) Bayesian methods in bioinformatics and computational systems biology. Brief Bioinform 8:109–116.

    Article  PubMed  CAS  Google Scholar 

  22. Syvanen AC. (1994) Detection of point mutations in human genes by the solid-phase minisequencing method. Clin Chim Acta 226:225–236.

    Article  PubMed  CAS  Google Scholar 

  23. Guo Z, Guilfoyle RA, Thiel AJ, et al. (1994) Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res 22:5456–5465.

    Article  PubMed  CAS  Google Scholar 

  24. Pastinen T, Raitio M, Lindroos K, et al. (2000) A system for specific, high-throughput genotyping by allele-specific primer extension on microarrays. Genome Res 10:1031–1042.

    Article  PubMed  CAS  Google Scholar 

  25. Hirschhorn JN, Sklar P, Lindblad-Toh K, et al. (2000) SBE-TAGS: an array-based method for efficient single-nucleotide polymorphism genotyping. Proc Natl Acad Sci USA 97:12164–12169.

    Article  PubMed  CAS  Google Scholar 

  26. Forche A, May G, Magee PT. (2005) Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during infection. Eukaryot Cell 4:156–165.

    Article  PubMed  CAS  Google Scholar 

  27. Irving JA, Bloodworth L, Bown NP, et al. (2005) Loss of heterozygosity in childhood acute lymphoblastic leukemia detected by genome-wide microarray single nucleotide polymorphism analysis. Cancer Res 65:3053–3058.

    Article  PubMed  CAS  Google Scholar 

  28. Jacobs S, Thompson ER, Nannya Y, et al. (2007) Genome-wide, high-resolution detection of copy number, loss of heterozygosity, and genotypes from formalin-fixed, paraffin-embedded tumor tissue using microarrays. Cancer Res 67:2544–2551.

    Article  PubMed  CAS  Google Scholar 

  29. Oostenbrug LE, Nolte IM, Oosterom E, et al. (2006) CARD15 in inflammatory bowel disease and Crohn’s disease phenotypes: an association study and pooled analysis. Dig Liver Dis 38:834–845.

    Article  PubMed  CAS  Google Scholar 

  30. Duerr RH, Taylor KD, Brant SR, et al. (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463.

    Article  PubMed  CAS  Google Scholar 

  31. Frazer KA, Ballinger DG, Cox DR, et al. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861.

    Article  PubMed  CAS  Google Scholar 

  32. Everberg H, Clough J, Henderson P, Jergil B, Tjerneld F, Ramirez IB. (2006) J Chromatogr A 1118:244–252. http://www.hapmap.org/

    Article  PubMed  CAS  Google Scholar 

  33. Birney E, Stamatoyannopoulos JA, Dutta A, et al. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816.

    Article  PubMed  CAS  Google Scholar 

  34. Fire A, Xu S, Montgomery MK, et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811.

    Article  PubMed  CAS  Google Scholar 

  35. Rossi JJ. (2004) Medicine: a cholesterol connection in RNAi. Nature 432:155–156.

    Article  PubMed  CAS  Google Scholar 

  36. Soutschek J, Akinc A, Bramlage B, et al. (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432: 173–178.

    Article  PubMed  Google Scholar 

  37. Hutchinson E. (2006) Expression profiling: Small but influential. Nat Rev Cancer 6:345.

    Article  CAS  Google Scholar 

  38. Yanaihara N, Caplen N, Bowman E, et al. (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198.

    Article  PubMed  CAS  Google Scholar 

  39. Meltzer PS. (2005) Cancer genomics: small RNAs with big impacts. Nature 435:745–746.

    Article  PubMed  CAS  Google Scholar 

  40. Blenkiron C, Goldstein LD, Thorne NP, et al. (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8:R214.

    Article  PubMed  CAS  Google Scholar 

  41. Pruijn GJ. (2006) The RNA interference pathway: a new target for autoimmunity. Arthritis Res Ther 8:110.

    Article  PubMed  CAS  Google Scholar 

  42. Miller VM, Gouvion CM, Davidson BL, et al. (2004) Targeting Alzheimer’s disease genes with RNA interference: an efficient strategy for silencing mutant alleles. Nucleic Acids Res 32:661–668.

    Article  PubMed  CAS  Google Scholar 

  43. Knutsen T, Gobu V, Knaus R, et al. (2005) The interactive online SKY/M-FISH & CGH database and the Entrez cancer chromosomes search database: linkage of chromosomal aberrations with the genome sequence. Genes Chromosomes Cancer 44:52–64.

    Article  PubMed  CAS  Google Scholar 

  44. Hardison RC. (2003) Comparative genomics. PLoS Biol 1:E58.

    Article  PubMed  CAS  Google Scholar 

  45. Bergman CM, Pfeiffer BD, Rincon-Limas DE, et al. (2002). Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome. Genome Biol 3:RESEARCH0086.

    Google Scholar 

  46. Fermin D, Allen BB, Blackwell TW, Menon R, Adamski M, Xu Y, Ulintz P, Omenn GS, States DJ. (2006) Genome Biol 7:R35.

    Article  PubMed  CAS  Google Scholar 

  47. Sabbioni G, Sepai O, Norppa H, et al. (2007) Comparison of biomarkers in workers exposed to 2,4,6-trinitrotoluene. Biomarkers 12:21–37.

    Article  PubMed  CAS  Google Scholar 

  48. Lakhan SE. (2006) Schizophrenia proteomics: biomarkers on the path to laboratory medicine ? Diagn Pathol 1:11.

    Article  PubMed  CAS  Google Scholar 

  49. Hunter DJ, Kraft P, Jacobs KB, et al. (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39:870–874.

    Article  PubMed  CAS  Google Scholar 

  50. Easton DF, Pooley KA, Dunning AM, et al. (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093.

    Article  PubMed  CAS  Google Scholar 

  51. Cox J, Mann M. (2007) Is proteomics the new genomics ? Cell 130:395–398.

    Article  PubMed  CAS  Google Scholar 

  52. Yates JR, 3rd, Gilchrist A, Howell KE, et al. (2005) Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol 6: 702–714.

    Article  PubMed  CAS  Google Scholar 

  53. Zheng J, Gao X, Beretta L, He F. (2006) The Human Liver Proteome Project (HLPP) workshop during the 4th HUPO World Congress. Proteomics 6:1716–1718.

    Article  PubMed  CAS  Google Scholar 

  54. Hamacher M, Stephan C, Bluggel M, et al. (2006) The HUPO Brain Proteome Project jamboree: centralised summary of the pilot studies. Proteomics 6:1719–1721.

    Article  PubMed  CAS  Google Scholar 

  55. Gorg A, Obermaier C, Boguth G, et al. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053.

    Article  PubMed  CAS  Google Scholar 

  56. Pelzing M, Neususs C. (2005) Separation techniques hyphenated to electrospray-tandem mass spectrometry in proteomics: capillary electrophoresis versus nanoliquid chromatography. Electrophoresis 26:2717–2728.

    Article  PubMed  CAS  Google Scholar 

  57. Seet BT, Dikic I, Zhou MM, et al. (2006) Reading protein modifications with interaction domains. Nat Rev Mol Cell Biol 7:473–483.

    Article  PubMed  CAS  Google Scholar 

  58. Aebersold R, Mann M. (2003) Mass spectrometry-based proteomics. Nature 422:198–207.

    Article  PubMed  CAS  Google Scholar 

  59. Hattan SJ, Parker KC. (2006) Methodology utilizing MS signal intensity and LC retention time for quantitative analysis and precursor ion selection in proteomic LC-MALDI analyses. Anal Chem 78:7986–7996.

    Article  PubMed  CAS  Google Scholar 

  60. Wan Y, Yang A, Chen T. (2006) Anal Chem 78:432–437. http://us.expasy.org/tools/

    Article  PubMed  CAS  Google Scholar 

  61. Beck HC, Nielsen EC, Matthiesen R, et al. (2006) Quantitative proteomic analysis of post-translational modifications of human histones. Mol Cell Proteomics 5:1314–1325.

    Article  PubMed  CAS  Google Scholar 

  62. Listgarten J, Emili A. (2005) Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 4:419–434.

    Article  PubMed  CAS  Google Scholar 

  63. Matthiesen R, Trelle MB, Hojrup P, et al. (2005) VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. J Proteome Res 4:2338–2347.

    Article  PubMed  CAS  Google Scholar 

  64. Tokheim AM, Martin BL. (2006) Proteins 64:28–33. http://msquant.sourceforge.net/

    Article  PubMed  CAS  Google Scholar 

  65. MacCoss MJ, Wu CC, Liu H, et al. (2003) A correlation algorithm for the automated quantitative analysis of shotgun proteomics data. Anal Chem 75:6912–6921.

    Article  PubMed  CAS  Google Scholar 

  66. Venable JD, Dong MQ, Wohlschlegel J, et al. (2004) Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods 1:39–45.

    Article  PubMed  CAS  Google Scholar 

  67. Matthiesen R. (2007) Methods, algorithms and tools in computational proteomics: a practical point of view. Proteomics 7:2815–2832.

    Article  PubMed  CAS  Google Scholar 

  68. Mueller LN, Brusniak MY, Mani DR, et al. (2008) An Assessment of Software Solutions for the Analysis of Mass Spectrometry Based Quantitative Proteomics Data. J Proteome Res 7:51–61.

    Article  PubMed  CAS  Google Scholar 

  69. Doyle HA, Mamula MJ. (2005) Posttranslational modifications of self-antigens. Ann N Y Acad Sci 1050:1–9.

    Article  PubMed  CAS  Google Scholar 

  70. Yuan C, Ravi R, Murphy AM. (2005) Discovery of disease-induced post-translational modifications in cardiac contractile proteins. Curr Opin Mol Ther 7:234–239.

    PubMed  CAS  Google Scholar 

  71. Biroccio A, Del Boccio P, Panella M, et al. (2006) Differential post-translational modifications of transthyretin in Alzheimer’s disease: a study of the cerebral spinal fluid. Proteomics 6:2305–2313.

    Article  PubMed  CAS  Google Scholar 

  72. Kim JK, Mastronardi FG, Wood DD, et al. (2003) Multiple sclerosis: an important role for post-translational modifications of myelin basic protein in pathogenesis. Mol Cell Proteomics 2:453–462.

    PubMed  CAS  Google Scholar 

  73. Anderton SM. (2004) Post-translational modifications of self antigens: implications for autoimmunity. Curr Opin Immunol 16:753–758.

    Article  PubMed  CAS  Google Scholar 

  74. Eastman RT, Buckner FS, Yokoyama K, et al. (2006) Thematic review series: lipid posttranslational modifications. Fighting parasitic disease by blocking protein farnesylation. J Lipid Res 47:233–240.

    Article  PubMed  CAS  Google Scholar 

  75. Lamerz J, Selle H, Scapozza L, et al. (2005) Correlation-associated peptide networks of human cerebrospinal fluid. Proteomics 5:2789–2798.

    Article  PubMed  CAS  Google Scholar 

  76. Tanner S, Payne SH, Dasari S, et al. (2008) Accurate Annotation of Peptide Modifications through Unrestrictive Database Search. J Proteome Res 7:170–181.

    Article  PubMed  CAS  Google Scholar 

  77. Kim S, Na S, Sim JW, et al. (2006) MODi: a powerful and convenient web server for identifying multiple post-translational peptide modifications from tandem mass spectra. Nucleic Acids Res 34:W258–W263.

    Article  PubMed  CAS  Google Scholar 

  78. Zamdborg L, LeDuc RD, Glowacz KJ, et al. (2007) ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry. Nucleic Acids Res 35:W701–W706.

    Article  PubMed  Google Scholar 

  79. Griffiths J. (2007) The way of array. Anal Chem 79:8833.

    Article  CAS  Google Scholar 

  80. Lv LL, Liu BC. (2007) High-throughput antibody microarrays for quantitative proteomic analysis. Expert Rev Proteomics 4:505–513.

    Article  PubMed  CAS  Google Scholar 

  81. Espina V, Wulfkuhle JD, Calvert VS, et al. (2007) Reverse phase protein microarrays for monitoring biological responses. Methods Mol Biol 383:321–336.

    Article  PubMed  CAS  Google Scholar 

  82. LaBaer J, Ramachandran N. (2005) Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol 9:14–19.

    Article  PubMed  CAS  Google Scholar 

  83. Joos TO, Schrenk M, Hopfl P, et al. (2000) A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 21:2641–2650.

    Article  PubMed  CAS  Google Scholar 

  84. Robinson WH, DiGennaro C, Hueber W, et al. (2002) Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat Med 8:295–301.

    Article  PubMed  CAS  Google Scholar 

  85. Balboni I, Chan SM, Kattah M, et al. (2006) Multiplexed protein array platforms for analysis of autoimmune diseases. Annu Rev Immunol 24:391–418.

    Article  PubMed  CAS  Google Scholar 

  86. Ramachandran N, Hainsworth E, Bhullar B, et al. (2004) Self-assembling protein microarrays. Science 305:86–90.

    Article  PubMed  CAS  Google Scholar 

  87. Taussig MJ, Stoevesandt O, Borrebaeck CA, et al. (2007) ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome. Nat Methods 4:13–17.

    Article  PubMed  CAS  Google Scholar 

  88. Nolan JP, Sklar LA. (2002) Suspension array technology: evolution of the flat-array paradigm. Trends Biotechnol 20:9–12.

    Article  PubMed  CAS  Google Scholar 

  89. Wang L, Cole KD, Peterson A, et al. (2007) Monoclonal antibody selection for interleukin-4 quantification using suspension arrays and forward-phase protein microarrays. J Proteome Res 6:4720–4727.

    Article  PubMed  CAS  Google Scholar 

  90. McLaughlin T, Siepen JA, Selley J, Lynch JA, Lau KW, Yin H, Gaskell SJ, Hubbard SJ. (2006) Nucleic Acids Res 34:D649–D654. http://www.eupa.org/

    Article  PubMed  CAS  Google Scholar 

  91. Wishart DS, Tzur D, Knox C, et al. (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35:D521–D526.

    Article  PubMed  CAS  Google Scholar 

  92. Salek RM, Maguire ML, Bentley E, et al. (2007) A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics 29:99–108.

    PubMed  CAS  Google Scholar 

  93. Vangala S, Tonelli A. (2007) Biomarkers, metabonomics, and drug development: can inborn errors of metabolism help in understanding drug toxicity? AAPS J 9:E284–E297.

    Article  PubMed  CAS  Google Scholar 

  94. Scriver CR. (2007) The PAH gene, phenylketonuria, and a paradigm shift. Hum Mutat 28:831–845.

    Article  PubMed  CAS  Google Scholar 

  95. Peters T, Thaete C, Wolf S, Popp A, et al. (2003) A mouse model for cystinuria type I. Hum Mol Genet 12:2109–2120.

    Article  PubMed  CAS  Google Scholar 

  96. Weiss KM. (1996) Variation in the human genome, Introduction. Ciba Found Symp 197:1–5.

    PubMed  CAS  Google Scholar 

  97. Scriver CR, Byck S, Prevost L, et al. (1996) The phenylalanine hydroxylase locus: a marker for the history of phenylketonuria and human genetic diversity. PAH Mutation Analysis Consortium. Ciba Found Symp 197:73–90; discussion 90–66.

    PubMed  CAS  Google Scholar 

  98. Botstein D, Risch N. (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl):228–237.

    Article  PubMed  CAS  Google Scholar 

  99. Dettmer K, Hammock BD. (2004) Metabolomics–a new exciting field within the “omics” sciences. Environ Health Perspect 112:A396–A397.

    PubMed  Google Scholar 

  100. Hollywood K, Brison DR, Goodacre R. (2006) Metabolomics: current technologies and future trends. Proteomics 6:4716–4723.

    Article  PubMed  CAS  Google Scholar 

  101. Baumgartner C, Baumgartner D. (2006) Biomarker discovery, disease classification, and similarity query processing on high-throughput MS/MS data of inborn errors of metabolism. J Biomol Screen 11:90–99.

    Article  PubMed  CAS  Google Scholar 

  102. Dettmer K, Aronov PA, Hammock BD. (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78.

    Article  PubMed  CAS  Google Scholar 

  103. Griffin JL, Scott J, Nicholson JK. (2007) The influence of pharmacogenetics on fatty liver disease in the wistar and kyoto rats: a combined transcriptomic and metabonomic study. J Proteome Res 6:54–61.

    Article  PubMed  CAS  Google Scholar 

  104. Griffin JL, Bonney SA, Mann C, et al. (2004) An integrated reverse functional genomic and metabolic approach to understanding orotic acid-induced fatty liver. Physiol Genomics 17:140–149.

    Article  PubMed  CAS  Google Scholar 

  105. Kanehisa M, Goto S, Kawashima S, et al. (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280.

    Article  PubMed  CAS  Google Scholar 

  106. Krummenacker M, Paley S, Mueller L, et al. (2005) Querying and computing with BioCyc databases. Bioinformatics 21:3454–3455.

    Article  PubMed  CAS  Google Scholar 

  107. Joshi-Tope G, Gillespie M, Vastrik I, et al. (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33:D428–D432.

    Article  PubMed  CAS  Google Scholar 

  108. McKusick VA. (2007) Mendelian Inheritance in Man and its online version, OMIM. Am J Hum Genet 80:588–604.

    Article  PubMed  CAS  Google Scholar 

  109. Steely HT, Dillow GW, Bian L, Grundstad J, Braun TA, Casavant TL, McCartney MD, Clark AF. (2006) Mol Vis 12:372–383. http://www.hupo.org/overview/glossary/

    PubMed  CAS  Google Scholar 

  110. Cambien F, Tiret L. (2007) Genetics of cardiovascular diseases: from single mutations to the whole genome. Circulation 116:1714–1724.

    Article  PubMed  Google Scholar 

  111. Kingsmore SF, Lindquist IE, Mudge J, et al. (2007) Genome-Wide Association Studies: Progress in Identifying Genetic Biomarkers in Common, Complex Diseases. Biomarker Insights 2:283–292.

    PubMed  Google Scholar 

  112. Srinivas PR, Verma M, Zhao Y, et al. (2002) Proteomics for cancer biomarker discovery. Clin Chem 48:1160–1169.

    PubMed  CAS  Google Scholar 

  113. Meyer HE, Stuhler K. (2007) High-performance Proteomics as a Tool in Biomarker Discovery. Proteomics 7(Suppl 1):18–26.

    Article  PubMed  CAS  Google Scholar 

  114. Vosseller K. (2007) Proteomics of Alzheimer’s disease: Unveiling protein dysregulation in complex neuronal systems. Proteomics Clin Appl 1:1351–1361.

    Article  CAS  Google Scholar 

  115. Iorio MV, Visone R, Di Leva G, et al. (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707.

    Article  PubMed  CAS  Google Scholar 

  116. Goodenowe DB, Cook LL, Liu J, et al. (2007) Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer’s disease and dementia. J Lipid Res 48:2485–2498.

    Article  PubMed  CAS  Google Scholar 

  117. Martin R, Bielekova B, Hohlfeld R, et al. (2006) Biomarkers in multiple sclerosis. Dis Markers 22:183–185.

    PubMed  CAS  Google Scholar 

  118. Weinshenker BG, Wingerchuk DM, Pittock SJ, et al. (2006) NMO-IgG: a specific biomarker for neuromyelitis optica. Dis Markers 22:197–206.

    PubMed  CAS  Google Scholar 

  119. Berger T, Reindl M. (2006) Biomarkers in multiple sclerosis: role of antibodies. Dis Markers 22:207–212.

    PubMed  Google Scholar 

  120. O’Connor KC, Roy SM, Becker CH, et al. (2006) Comprehensive phenotyping in multiple sclerosis: discovery based proteomics and the current understanding of putative biomarkers. Dis Markers 22:213–225.

    PubMed  Google Scholar 

  121. Bhattacharyya S, Epstein J, Suva LJ. (2006) Biomarkers that discriminate multiple myeloma patients with or without skeletal involvement detected using SELDI-TOF mass spectrometry and statistical and machine learning tools. Dis Markers 22:245–255.

    PubMed  CAS  Google Scholar 

  122. Hoshida Y, Brunet JP, Tamayo P, et al. (2007) Subclass mapping: identifying common subtypes in independent disease data sets. PLoS ONE 2:e1195.

    Article  PubMed  CAS  Google Scholar 

  123. Liu JJ, Cutler G, Li W, et al. (2005) Multiclass cancer classification and biomarker discovery using GA-based algorithms. Bioinformatics 21:2691–2697.

    Article  PubMed  CAS  Google Scholar 

  124. Harris L, Fritsche H, Mennel R, et al. (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 25:5287–5312.

    Article  PubMed  CAS  Google Scholar 

  125. van ’t Veer LJ, Dai H, van de Vijver MJ, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536.

    Article  PubMed  Google Scholar 

  126. El-Rehim DMA, Ball G, Pinder SE, et al. (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116:340–350.

    Article  CAS  Google Scholar 

  127. Makretsov NA, Huntsman DG, Nielsen TO, et al. (2004) Hierarchical clustering analysis of tissue microarray immunostaining data identifies prognostically significant groups of breast carcinoma. Clin Cancer Res 10:6143–6151.

    Article  PubMed  CAS  Google Scholar 

  128. Nielsen TO, Hsu FD, Jensen K, et al. (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374.

    Article  PubMed  CAS  Google Scholar 

  129. Levenson D. (2007) Gene Expression Profile Tests for Breast Cancer Recurrence. Clin Lab News 33:4–5.

    Google Scholar 

  130. Sotiriou C, Piccart MJ. (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7:545–553.

    Article  PubMed  CAS  Google Scholar 

  131. McCabe N, Turner NC, Lord CJ, et al. (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66:8109–8115.

    Article  PubMed  CAS  Google Scholar 

  132. O’Connor M. (2006) Proteomics Success Story. Novel Biomarkers for DNA Damage Response Pathways: Insights and Applications for Cancer Therapy. Proteomics 6:69–71.

    Article  PubMed  CAS  Google Scholar 

  133. Souchelnytskyi S, Lomnytska M, Dubrovska A, et al. (2006) Proteomics Success Story. Towards Early Detection of Breast and Ovarian Cancer: Plasma Proteomics as a Tool to Find Novel Markers. Proteomics 6:65–68.

    Article  PubMed  CAS  Google Scholar 

  134. Lomnytska M, Dubrovska A, Hellman U, et al. (2006) Increased expression of cSHMT, Tbx3 and utrophin in plasma of ovarian and breast cancer patients. Int J Cancer 118:412–421.

    Article  PubMed  CAS  Google Scholar 

  135. Brenner DE, Normolle DP. (2007) Biomarkers for cancer risk, early detection, and prognosis: the validation conundrum. Cancer Epidemiol Biomarkers Prev 16:1918–1920.

    Article  PubMed  CAS  Google Scholar 

  136. Coombes KR, Morris JS, Hu J, et al. (2005) Serum proteomics profiling–a young technology begins to mature. Nat Biotechnol 23:291–292.

    Article  PubMed  CAS  Google Scholar 

  137. Wang SJ, Cohen N, Katz DA, et al. (2006) Retrospective validation of genomic biomarkers– what are the questions, challenges and strategies for developing useful relationships to clinical outcomes– workshop summary. Pharmacogenomics J 6:82–88.

    Article  PubMed  CAS  Google Scholar 

  138. Wang MC, Valenzuela LA, Murphy GP, et al. (1979) Purification of a human prostate specific antigen. Invest Urol 17:159–163.

    PubMed  CAS  Google Scholar 

  139. Papsidero LD, Wang MC, Valenzuela LA, et al. (1980) A prostate antigen in sera of prostatic cancer patients. Cancer Res 40:2428–2432.

    PubMed  CAS  Google Scholar 

  140. Diamandis EP. (2000) Prostate-specific antigen: a cancer fighter and a valuable messenger? Clin Chem 46:896–900.

    PubMed  CAS  Google Scholar 

  141. Wang MC, Valenzuela LA, Murphy GP, et al. (2002) Purification of a human prostate specific antigen. 1979. J Urol 167:960–964; discussion 64–65.

    Article  PubMed  CAS  Google Scholar 

  142. Liu FC, Chang DM, Lai JH, et al. (2007) Autoimmune hepatitis with raised alpha-fetoprotein level as the presenting symptoms of systemic lupus erythematosus: a case report. Rheumatol Int 27:489–491.

    Article  PubMed  Google Scholar 

  143. Supriatna Y, Kishimoto T, Furuya M, et al. (2007) Expression of liver-enriched nuclear factors and their isoforms in alpha-fetoprotein-producing gastric carcinoma cells. Exp Mol Pathol 82:316–321.

    Article  PubMed  CAS  Google Scholar 

  144. Campana D, Nori F, Piscitelli L, et al. (2007) Chromogranin A: is it a useful marker of neuroendocrine tumors? J Clin Oncol 25:1967–1973.

    Article  PubMed  CAS  Google Scholar 

  145. Zatelli MC, Torta M, Leon A, et al. (2007) Chromogranin A as a marker of neuroendocrine neoplasia: an Italian Multicenter Study. Endocr Relat Cancer 14:473–482.

    Article  PubMed  CAS  Google Scholar 

  146. Bradley DA, Redman BG. (2007) The times they are a-changin’ (Bob Dylan, 1964). Cancer 110:2366–2369.

    Article  PubMed  CAS  Google Scholar 

  147. Ma Q, Abel K, Sripichai O, et al. (2007) Beta-globin gene cluster polymorphisms are strongly associated with severity of HbE/beta(0)-thalassemia. Clin Genet 72:497–505.

    Article  PubMed  CAS  Google Scholar 

  148. Erlich PM, Lunetta KL, Cupples LA, et al. (2006) Polymorphisms in the PON gene cluster are associated with Alzheimer disease. Hum Mol Genet 15:77–85.

    Article  PubMed  CAS  Google Scholar 

  149. Selwood SP, Parvathy S, Cordell B, et al. (2007) Gene expression profile of the PDAPP mouse model for Alzheimer’s disease with and without Apolipoprotein E. Neurobiol Aging 30:574–90.

    Google Scholar 

  150. Prentice H, Webster KA. (2004) Genomic and proteomic profiles of heart disease. Trends Cardiovasc Med 14:282–288.

    Article  PubMed  CAS  Google Scholar 

  151. Sanchez-Carbayo M, Socci ND, Richstone L, et al. (2007) Genomic and proteomic profiles reveal the association of gelsolin to TP53 status and bladder cancer progression. Am J Pathol 171:1650–1658.

    Article  PubMed  CAS  Google Scholar 

  152. McRedmond JP, Park SD, Reilly DF, et al. (2004) Integration of proteomics and genomics in platelets: a profile of platelet proteins and platelet-specific genes. Mol Cell Proteomics 3:133–144.

    PubMed  CAS  Google Scholar 

  153. Ippolito JE, Xu J, Jain S, et al. (2005) An integrated functional genomics and metabolomics approach for defining poor prognosis in human neuroendocrine cancers. Proc Natl Acad Sci USA 102:9901–9906.

    Article  PubMed  CAS  Google Scholar 

  154. Mootha VK, Lepage P, Miller K, et al. (2003) Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci USA 100:605–610.

    Article  PubMed  CAS  Google Scholar 

  155. Shaham O, Wei R, Wang TJ, et al. (2008) Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 4:214.

    Article  PubMed  CAS  Google Scholar 

  156. Pagliarini DJ, Calvo SE, Chang B, et al. (2008) A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123.

    Article  PubMed  CAS  Google Scholar 

  157. Perroud B, Lee J, Valkova N, et al. (2006) Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol Cancer 5:64.

    Article  PubMed  CAS  Google Scholar 

  158. Alimonti A, Ristori G, Giubilei F, et al. (2007) Serum chemical elements and oxidative status in Alzheimer’s disease, Parkinson disease and multiple sclerosis. Neurotoxicology 28:450–456.

    Article  PubMed  CAS  Google Scholar 

  159. Pai SI, Lin YY, Macaes B, et al. (2006) Prospects of RNA interference therapy for cancer. Gene Ther 13:464–477.

    Article  PubMed  CAS  Google Scholar 

  160. Yano H, Kuroda S. (2008) Introduction of the disulfide proteome: application of a technique for the analysis of plant storage proteins as well as allergens. J Proteome Res 7:3071–3079.

    Article  PubMed  CAS  Google Scholar 

  161. Griffin JL, Vidal-Puig A. (2008) Current challenges in metabolomics for diabetes research: a vital functional genomic tool or just a ploy for gaining funding? Physiol Genomics 34:1–5.

    Article  PubMed  CAS  Google Scholar 

  162. Brindle JT, Antti H, Holmes E, et al. (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med 8:1439–1444.

    Article  PubMed  CAS  Google Scholar 

  163. Ringeissen S, Connor SC, Brown HR, et al. (2003) Potential urinary and plasma biomarkers of peroxisome proliferation in the rat: identification of N-methylnicotinamide and N-methyl-4-pyridone-3-carboxamide by 1H nuclear magnetic resonance and high performance liquid chromatography. Biomarkers 8:240–271.

    Article  PubMed  CAS  Google Scholar 

  164. Griffin JL. (2006) Understanding mouse models of disease through metabolomics. Curr Opin Chem Biol 10:309–315.

    Article  PubMed  CAS  Google Scholar 

  165. Saito Y, Yokota T, Mitani T, et al. (2005) Transgenic small interfering RNA halts amyotrophic lateral sclerosis in a mouse model. J Biol Chem 280:42826–42830.

    Article  PubMed  CAS  Google Scholar 

  166. Wu F, Dassopoulos T, Cope L, et al. (2007) Genome-wide gene expression differences in Crohn’s disease and ulcerative colitis from endoscopic pinch biopsies: insights into distinctive pathogenesis. Inflamm Bowel Dis 13:807–821.

    Article  PubMed  Google Scholar 

  167. The Welcome Trust Case Control Consortium. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678.

    Google Scholar 

  168. Schadt EE, Molony C, Chudin E, et al. (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6:e107.

    Article  PubMed  CAS  Google Scholar 

  169. Kader HA, Tchernev VT, Satyaraj E, et al. (2005) Protein microarray analysis of disease activity in pediatric inflammatory bowel disease demonstrates elevated serum PLGF, IL-7, TGF-beta1, and IL-12p40 levels in Crohn’s disease and ulcerative colitis patients in remission versus active disease. Am J Gastroenterol 100:414–423.

    Article  PubMed  CAS  Google Scholar 

  170. Bogdanov M, Matson WR, Wang L, et al. (2008) Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain 131:389–396.

    Article  PubMed  Google Scholar 

  171. Bergheanu SC, Reijmers T, Zwinderman AH, et al. (2008) Lipidomic approach to evaluate rosuvastatin and atorvastatin at various dosages: investigating differential effects among statins. Curr Med Res Opin 24:2477–2487.

    Google Scholar 

  172. Leiserowitz GS, Lebrilla C, Miyamoto S, et al. (2008) Glycomics analysis of serum: a potential new biomarker for ovarian cancer? Int J Gynecol Cancer 18:470–475.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gubb, E., Matthiesen, R. (2010). Introduction to Omics. In: Matthiesen, R. (eds) Bioinformatics Methods in Clinical Research. Methods in Molecular Biology, vol 593. Humana Press. https://doi.org/10.1007/978-1-60327-194-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-194-3_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-193-6

  • Online ISBN: 978-1-60327-194-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics