Skip to main content

Nonlinear Predictive Modeling of MHC Class II-Peptide Binding Using Bayesian Neural Networks

  • Protocol
Immunoinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 409))

Summary

Methods for predicting the binding affinity of peptides to the MHC have become more sophisticated in the past 5–10 years. It is possible to use computational quantitative structure-activity methods to build models of peptide affinity that are truly predictive. Two of the most useful methods for building models are Bayesian regularized neural networks for continuous or discrete (categorical) data and support vector machines (SVMs) for discrete data. We illustrate the application of Bayesian regularized neural networks to modeling MHC class II-binding affinity of peptides. Training data comprised sequences and binding data for nonamer (nine amino acid) peptides. Peptides were characterized by mathematical representations of several types. Independent test data comprised sequences and binding data for peptides of length ≤ 25 . We also internally validated the models by using 30% of the data in an internal test set. We obtained robust models, with near-identical statistics for multiple training runs. We determined how predictive our models were using statistical tests and area under the receiver operating characteristic (ROC) graphs (AROC) . Some mathematical representations of the peptides were more efficient than others and were able to generalize to unknown peptides outside of the training space. Bayesian neural networks are robust, efficient ‘‘universal approximators’’ that are well able to tackle the difficult problem of correctly predicting the MHC class II-binding activities of a majority of the test set peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buus, S. (1999) Description and prediction of peptide-MHC binding: The ‘Human MHC Project’. Curr. Opin. Immunol. 11, 209–213.

    Article  CAS  PubMed  Google Scholar 

  2. Doytchinova, I.A. and Flower, D.R. (2001) Towards the quantitative prediction of T-cell epitopes: CoMFA and CoMSIA studies of peptides with affinity for the class I MHC molecule HLA-A * 0201. J. Med. Chem. 44, 3572–3581.

    Article  CAS  PubMed  Google Scholar 

  3. Doytchinova, I.A., Blythe, M.J., and Flower, D.R. (2002) Additive method for the prediction of protein-peptide binding affinity. Application to the MHC class 1 molecule HLA-A * 0201. J. Proteome Res. 1, 263–272.

    Article  CAS  PubMed  Google Scholar 

  4. Logean, A., Sette, A., and Rognen, D. (2000) Customized versus universal scoring functions: application to class I MHC-peptide binding free energy predictions. Bioorg. Med. Chem. Lett. 11, 675–679.

    Article  Google Scholar 

  5. Brusic, V., Bucci, K., Schönbach, C., Petrovsky, N., Zelezvikow, J., and Kazura, J.K. (2001) Efficient discovery of immune response targets by cyclical refinement of QSAR models of peptide binding. J. Mol. Graph. Model. 19, 405–411.

    Article  CAS  PubMed  Google Scholar 

  6. Gulukota, K., Sidney, J., Sette, A., and DeLisi, C. (1997) Two complementary methods for predicting peptides binding major histocompatibility complex molecules. J. Mol. Biol. 267, 1258–1267.

    Article  CAS  PubMed  Google Scholar 

  7. De Hann, E.C., Wauben, M.H.M., Grosfeld-Stulemeyer, M.C., Kruijtzer, J.A.W., Liskamp, R.M.J., and Moret, E.E. (2002) Major histocompatibility complex class II binding characteristics of peptoid-peptide hybrids. Biorg. Med. Chem. 10, 1939–1945.

    Article  Google Scholar 

  8. Bhasin, M. and Raghava, G.P.S. (2004) SVM-based method for predicting HLA-DRB1 * 0401 binding peptides in an antigen sequence. Bioinformatics 20, 421–423.

    Article  CAS  PubMed  Google Scholar 

  9. Polley, M.J., Winkler, D.A., and Burden, F.R. (2004) Broad-based QSAR of farnesyltransferase inhibitors using a Bayesian regularized neural network. J. Med. Chem. 47, 6230–6238.

    Article  CAS  PubMed  Google Scholar 

  10. Winkler, D.A. and Burden, F.R. (2004) Modelling blood brain barrier partitioning using Bayesian neural nets. J. Mol. Graph. Model. 22, 499–508.

    Article  CAS  PubMed  Google Scholar 

  11. Burden, F.R. and Winkler, D.A. (2000) A QSAR model for the acute toxicity of substituted benzenes towards Tetrahymena pyriformis using Bayesian regularized neural networks. Chem. Res. Toxicol. 13, 436–440.

    Article  CAS  PubMed  Google Scholar 

  12. Sorich, M.J., McKinnon, R.A., Winkler, D.A., Burden, F.R., Miners, J.O., and Smith, P.A. (2003) Comparison of linear and nonlinear classification algorithms: Prediction of drug metabolism by UDP-glucuronosyltransferase isoforms. J. Chem. Inf. Comput. Sci. 43, 2019–2024.

    CAS  PubMed  Google Scholar 

  13. Winkler, D.A. and Burden, F.R. (2000) Robust QSAR models from novel descriptors and Bayesian regularized neural networks. Mol. Simul. 24. 243–258.

    Article  CAS  Google Scholar 

  14. Burden, F.R. and Winkler, D.A. (1999) Robust QSAR models using Bayesian regularized artificial neural networks. J. Med. Chem. 42, 3183–3187.

    Article  CAS  PubMed  Google Scholar 

  15. Nabney, I.T. (2002). Netlab: Algorithms for Pattern Recognition. Springer-Verlag, London.

    Google Scholar 

  16. Burden, F.R and Winkler, D.A. (2007) Bayesian Regularization of Neural Networks, in ‘‘Applications of Artificial Neural Networks in Chemistry and Biology’’, Livingston, D. (ed.) Humana Press.

    Google Scholar 

  17. Winkler, D.A. and Burden, F.R. (2005) Predictive Bayesian neural network models of MHC class II peptide binding. J. Mol. Graph. Model. 23, 481–489.

    Article  PubMed  Google Scholar 

  18. Brusic, V., Rudy, G., and Harrison, L.C. (1998) MHCPEP, a database of MHC-binding peptides: update 1997. Nucleic Acids Res. 26, 368–371.

    Article  CAS  PubMed  Google Scholar 

  19. Sandberg, M., Eriksson, L., Jonsson, J., Sjostrom, M., and Wold, S. (1998) New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J. Med. Chem. 41, 2481–2491.

    Article  CAS  PubMed  Google Scholar 

  20. MacKay, D. J. C. (1992) A practical Bayesian framework for backpropagation networks. Neural Comput. 4, 448–472.

    Article  Google Scholar 

  21. Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science 240, 1285–1293.

    Article  CAS  PubMed  Google Scholar 

  22. Brusic, V., Rudy, G., Honeyman, M., Hammer, J., Harrison, L. (1998) Prediction of MHC Class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14, 121–130.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Winkler, D.A., Burden, F.R. (2007). Nonlinear Predictive Modeling of MHC Class II-Peptide Binding Using Bayesian Neural Networks. In: Flower, D.R. (eds) Immunoinformatics. Methods in Molecular Biology™, vol 409. Humana Press. https://doi.org/10.1007/978-1-60327-118-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-118-9_27

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-699-3

  • Online ISBN: 978-1-60327-118-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics