Skip to main content

Identification of Sequence-Specific DNA-Binding Proteins by Southwestern Blotting

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 543))

Summary

We describe a Southwestern blotting method for characterization of both DNA-binding proteins and their specific sites. Proteins are first separated on a sodium dodecyl sulfate (SDS) polyacrylamide gel, then renatured in SDS-free buffer and transferred by electroblotting to an immobilizing membrane, and detected by their ability to bind radiolabeled DNA. The protein(s) interacting with the labeled DNA is visualized by autoradiography. This technique was used in our laboratory to visualize the metal regulatory consensus sequence-binding protein MTF-1 in L cell crude nuclear extracts.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bowen B., Steinberg J., Laemmli U. K., and Weintraub H. (1980). The detection of DNA-binding proteins by protein blotting. Nucleic Acids Res 8, 1–20.

    Article  PubMed  CAS  Google Scholar 

  2. Jack R. S., Brown M. T., and Gehring W. J. (1983). Protein blotting as a means to detect sequence-specific DNA-binding proteins. Cold Spring Harb Symp Quant Biol 47, 483–491.

    Article  PubMed  Google Scholar 

  3. Miskimins W. K., Roberts M. P., McClelland A., and Ruddle F. H. (1985). Use of a protein-blotting procedure and a specific DNA probe to identify nuclear proteins that recognize the promoter region of the transferrin receptor gene. Proc Natl Acad Sci USA 82, 6741–6744.

    Article  PubMed  CAS  Google Scholar 

  4. Silva C. M., Tully D. B., Petch L. A., Jewell C. M., and Cidlowski J. A. (1987). Application of a protein-blotting procedure to the study of human glucocorticoid receptor interactions with DNA. Proc Natl Acad Sci USA 84, 1744–1748.

    Article  PubMed  CAS  Google Scholar 

  5. Wegenka U. M., Buschmann J., Lutticken C., Heinrich P. C., and Horn F. (1993). Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol 13, 276–288.

    PubMed  CAS  Google Scholar 

  6. Kwast-Welfeld J., Debelle I., Walker P. R., Whitfield J. F., and Sikorska M. (1993). Identification of a new cAMP response element-binding factor by Southwestern blotting. J Biol Chem 268, 19581–19585.

    PubMed  CAS  Google Scholar 

  7. Villafuerte B. C., Zhao W., Herington A. C., Saffery R., and Phillips L. S. (1997). Identification of an insulin-responsive element in the rat insulin-like growth factor-binding protein-3 gene. J Biol Chem 272, 5024–5030.

    Article  PubMed  CAS  Google Scholar 

  8. Wu J., Jiang Q., Chen X., Wu X. H., and Chan J. S. (1998). Identification of a novel mouse hepatic 52 kDa protein that interacts with the cAMP response element of the rat angiotensinogen gene. Biochem J 329, 623–629.

    PubMed  CAS  Google Scholar 

  9. Chen A., and Davis B. H. (1999). UV irradiation activates JNK and increases alphaI(I) collagen gene expression in rat hepatic stellate cells. J Biol Chem 274, 158–164.

    Article  PubMed  CAS  Google Scholar 

  10. Ashizawa M., Miyazaki M., Abe K. et al (2003). Detection of nuclear factor-κB in IgA nephropathy using Southwestern histochemistry. Am J Kidney Dis 42, 76–86.

    Article  PubMed  CAS  Google Scholar 

  11. Scassa M. E., Guberman A. S., Ceruti J. M., and Canepa E. T. (2004). Hepatic nuclear factor 3 and nuclear factor 1 regulate 5-aminolevulinate synthase gene expression and are involved in insulin repression. J Biol Chem 279, 28082–28092.

    Article  PubMed  CAS  Google Scholar 

  12. Xing C., LaPorte J. R., Barbay J. K., and Myers A. G. (2004). Identification of GAPDH as a protein target of the saframycin antiproliferative agents. Proc Natl Acad Sci USA 101, 5862–5866.

    Article  PubMed  CAS  Google Scholar 

  13. Wei C. C., Guo D. F., Zhang S. L., Ingelfinger J. R., and Chan J. S. D. (2005). Heterogenous nuclear ribonucleoprotein F modulates angiotensinogen gene expression in rat kidney proximal tubular cells. J Am Soc Nephrol 16, 616–628.

    Article  PubMed  CAS  Google Scholar 

  14. Katsu Y., Yamashita M., and Nagahama Y. (1997) Isolation and characterization of goldfish Y box protein, a germ-cell- specific RNA-binding protein. Eur J Biochem 249, 854–861.

    Article  PubMed  CAS  Google Scholar 

  15. Johnston K. A., Polymenis M., Wang S., Branda J., and Schmidt E. V. (1998). Novel regulatory factors interacting with the promoter of the gene encoding the mRNA cap binding protein (eIF4E) and their function in growth regulation. Mol Cell Biol 18, 5621–5633.

    PubMed  CAS  Google Scholar 

  16. Hamann S., and Stratling W. H. (1998). Specific binding of Drosophila nuclear protein PEP (protein on ecdysone puffs) to hsp70 DNA and RNA. Nucleic Acids Res 26, 4108–4115.

    Article  PubMed  CAS  Google Scholar 

  17. Keller A. D., and Maniatis T. (1991). Selection of sequences recognized by a DNA binding protein using a preparative Southwestern blot. Nucleic Acids Res 19, 4675–4680.

    Article  PubMed  CAS  Google Scholar 

  18. Singh H., Clerc R. G., and LeBowitz J. H. (1989). Molecular cloning of sequence-specific DNA binding proteins using recognition site probes. Biotechniques 7, 252–261.

    PubMed  CAS  Google Scholar 

  19. Stuempfle K. J., and Floros J. (1997). Caution is advised when cDNA expression libraries are screened by Southwestern methodologies. Biotechniques 22, 260–264.

    PubMed  CAS  Google Scholar 

  20. Fukuda I., Nishiumi S., Yabushita Y., et al (2004). A new Southwestern chemistry-based ELISA for detection of aryl hydrocarbon receptor transformation: application to the screening of its receptor agonists and antagonists. J Immunol Methods 287, 187–201.

    Article  PubMed  CAS  Google Scholar 

  21. Siu F. K., Lee L. T., and Chow B. K. (2008). Southwestern blotting in investigating transcriptional regulation. Nature Protoc 3, 51–58.

    Article  CAS  Google Scholar 

  22. Sambrook J., Fritsch E. F., and Maniatis T. (1989). Molecular cloning. A laboratory manual. 2nd edn. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  23. Dignam J. D. (1990). Preparation of extracts from higher eukaryotes. Methods Enzymol 182, 194–203.

    Article  PubMed  CAS  Google Scholar 

  24. Handen J. S., and Rosenberg H. F. (1997). An improved method for Southwestern blotting. Front Biosci 2, c9–c11.

    CAS  Google Scholar 

  25. Dooley S., Welter C., and Blin N. (1992) Nonradioactive Southwestern analysis using chemiluminescent detection. Biotechniques 13, 540–543.

    PubMed  CAS  Google Scholar 

  26. Séguin C., and Prévost J. Detection of a nuclear protein that interacts with a metal regulatory element of the mouse metallothionein 1 gene. Nucleic Acids Res 16, 10547–10560.

    Google Scholar 

  27. Melkonyan H., Hofmann H. A., Nacken W., Sorg C., and Klempt M. (1998). The gene encoding the myeloid-related protein 14 (MRP14), a calcium- binding protein expressed in granulocytes and monocytes, contains a potent enhancer element in the first intron. J Biol Chem 273, 27026–27032.

    Article  PubMed  CAS  Google Scholar 

  28. Dhawan P., Chang R., and Mehta K. D. (1997). Identification of essential nucleotides of the FP1 element responsible for enhancement of low density lipoprotein receptor gene transcription. Nucleic Acids Res 25, 4132–4138.

    Article  PubMed  CAS  Google Scholar 

  29. Schaufele F., Cassill J. A., West B. L., and Reudelhuber T. (1990). Resolution by diagonal gel mobility shift assays of multisubunit complexes binding to a functionally important element of the rat growth hormone gene promoter. J Biol Chem265,14592–14598.

    PubMed  CAS  Google Scholar 

  30. Papavassiliou A. G., and Bohmann D. (1992). Optimization of the signal-to-noise ratio in south-western assays by using lipid-free BSA as blocking reagent. Nucleic Acids Res 20, 4365–4366.

    Article  PubMed  CAS  Google Scholar 

  31. Mazen A., Ménissier-de Murcia J., Molinete M., et al (1989). Poly(ADP-ribose) polymerase: a novel finger protein. Nucleic Acids Res 12, 4689–4698.

    Article  Google Scholar 

  32. Mimori T., Hardin J. A., and Steitz J. A. Characterization of the DNA-binding protein antigen Ku recognized by autoantibodies from patients with rheumatic disorders. J Biol Chem 261, 2274–2278.

    Google Scholar 

  33. Wold M. S. (1997). Replication protein A: a heterotrimeric, single-stranded DNA- binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66, 61–92.

    Article  PubMed  CAS  Google Scholar 

  34. Andreone T. L., O’Connor M., Denenberg A., Hake P. W., and Zingarelli B. (2003). Poly(ADP-Ribose) polymerase-1 regulates activation of activator protein-1 in murine fibroblasts. J Immunol 170, 2113–2120.

    PubMed  CAS  Google Scholar 

  35. Kannan P., Yu Y., Wankhade S., and Tainsky M. A. (1999). PolyADP-ribose polymerase is a coactivator for AP-2-mediated transcriptional activation. Nucleic Acids Res 27, 866–874.

    Article  PubMed  CAS  Google Scholar 

  36. Butler A. J., and Ordahl C. P. (1999). Poly(ADP-ribose) polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription. Mol Cell Biol 19, 296–306.

    PubMed  CAS  Google Scholar 

  37. Nakajima H., Nagaso H., Kakui N., Ishikawa M., Hiranuma T., and Hoshiko S. (2004). Critical role of the automodification of poly(ADP-ribose) polymerase-1 in nuclear factor-{kappa}B-dependent gene expression in primary cultured mouse glial cells. J Biol Chem 279, 42774–42786.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the Conseil de recherches en sciences naturelles et en génie du Canada to CS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Séguin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Labbé, S., Harrisson, JF., Séguin, C. (2009). Identification of Sequence-Specific DNA-Binding Proteins by Southwestern Blotting. In: Leblanc, B., Moss, T. (eds) DNA-Protein Interactions. Methods in Molecular Biology™, vol 543. Humana Press. https://doi.org/10.1007/978-1-60327-015-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-015-1_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-014-4

  • Online ISBN: 978-1-60327-015-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics