Skip to main content

Virus Production for Clinical Gene Therapy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 542))

Summary

Gene therapy is becoming increasingly relevant for the treatment of prominent human diseases. Viral vectors are currently used in more than 50% of the gene therapy clinical trials, most of them aimed at cancer diseases. Clearly, the increasing needs of high-quality viral preparations required the elimination of process bottlenecks, streamlining the development of the viral into a real-world clinical tool . Virus production for clinical gene therapy can be a limiting step because many virus generation protocols rely on labor-intensive, bench-scale methods; robust, cost-effective strategies for the delivery of clinical-grade viruses are thus essential for the future of gene therapy. A comprehensive picture of key aspects on the integration of upstream and downstream processing is addressed in this chapter, by describing the case study of recombinant budded baculoviruses for gene therapy; scalable methods are described in detail as well as mandatory characterization techniques for a proper and complete quality assessment of the viral vectors.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    “Viral quality” (total viruses/infective viruses ratio) or “viral titer” can be used to define the harvest optimum, depending on the process specificities and the strategy of optimization available.

  2. 2.

    Cells previously transfected thereby becoming capable of permanently generating a designed viral vector.

References

  1. Wu, N., and Ataai, M. M. (2000) Production of viral vectors for gene therapy applications. Curr Opin Biotechnol 11, 205–8.

    Article  PubMed  CAS  Google Scholar 

  2. Ozaki, H., Govorkova, E. A., Li, C., Xiong, X., Webster, R. G., and Webby, R. J. (2004) Generation of high-yielding influenza A viruses in African green monkey kidney (Vero) cells by reverse genetics. J Virol 78, (4), 1851–7.

    Article  PubMed  CAS  Google Scholar 

  3. Cruz, P. E., Maranga, L., and Carrondo, M. J. T. (2002) Integrated process optimization: lessons from retrovirus and virus-like particle production. J Biotechnol 99, 199–214.

    Article  PubMed  CAS  Google Scholar 

  4. CBER guidelines (2007), http://www.fda.gov/cber/guidelines.htm

  5. Rodrigues, T., Carrondo, M. J. T., Alves, P. M., and Cruz, P. E. (2007) Purification of retroviral vectors for clinical application: Biological implications and technological challenges. J Biotechnol 127, 520–41.

    Article  PubMed  CAS  Google Scholar 

  6. Gene Therapy Clinical Trials Worldwide. Charts and Tables, Vectors (2007), http://www.wiley.co.uk/genmed/clinical/.

  7. Cruz, P., Carmo, M., Rodrigues, T., and Alves, P. (2007) Retrovirus Production and Characterization. In Animal Cell Biotechnology: Methods and Protocols, 2nd ed.; Pörtner, R., Ed. Humana Press: Totowa, NJ, pp 475–87.

    Chapter  Google Scholar 

  8. Segura, M. M., Kamen, A., and Garnier, A. (2006) Downstream processing of oncoretroviral and lentiviral gene therapy vectors. Biotechnol Adv 24, (3), 321–37.

    Article  PubMed  Google Scholar 

  9. McTaggart, S., and Al-Rubeai, M. (2002) Retroviral vectors for human gene delivery. Biotechnol Adv 20, (1), 1–31.

    Article  PubMed  CAS  Google Scholar 

  10. Cockrell, A. S., and Kafri, T. (2007) Gene delivery by lentivirus vectors. Mol Biotechnol 36, (3), 184–204.

    Article  PubMed  CAS  Google Scholar 

  11. Lenz, H. J., Anderson, W. F., Hall, F. L., and Gordon, E. M. (2002) Clinical protocol. Tumor site specific phase I evaluation of safety and efficacy of hepatic arterial infusion of a matrix-targeted retroviral vector bearing a dominant negative cyclin G1 construct as intervention for colorectal carcinoma metastatic to liver. Hum Gene Ther 13, (12), 1515–37.

    Article  PubMed  Google Scholar 

  12. Merten, O. W. (2004) State-of-the-art of the production of retroviral vectors. J Gene Med 6, (Suppl 1), S105–24.

    Article  PubMed  CAS  Google Scholar 

  13. Ferreira, T. B., Alves, P. M., Aunins, J. G., and Carrondo, M. J. T. (2005) Use of adenoviral vectors as veterinary vaccines. Gene Ther 12, S73–S83.

    Article  PubMed  CAS  Google Scholar 

  14. Volpers, C., and Kochanek, S. (2004) Adenoviral vectors for gene transfer and therapy. J Gene Med 6, (Suppl 1), S164–71.

    Article  PubMed  CAS  Google Scholar 

  15. Graham, F. L., and Prevec, L. (1991) Manipulation of adenovirus vectors. In Methods in Molecular Biology: Gene Transfer and Expression Protocols 7, Murray, Ed. Humana Press: Clifton, NJ.

    Google Scholar 

  16. Wold, W. S. M., and Tollefson, A. E. (2006), Adenovirus Methods and Protocols, Adenoviruses, Ad Vectors, Quantitation, and Animal Models. Humana Press: Totowa, NJ.

    Google Scholar 

  17. Morenweiser, R. (2005) Downstream processing of viral vectors and vaccines. Gene Ther 12, (Suppl 1), S103–10.

    Article  PubMed  CAS  Google Scholar 

  18. Peixoto, C., Ferreira, T. B., Carrondo, M. J. T., Cruz, P. E., and Alves, P. M. (2006) Purification of adenoviral vectors using expanded bed chromatography. J Virol Methods 132, 121–6.

    Article  PubMed  CAS  Google Scholar 

  19. Grieger, J. C., and Samulski, R. J. (2005) Adeno-associated virus as a gene therapy vector: vector development, production and clinical applications. Adv Biochem Eng Biotechnol 99, 119–45.

    PubMed  CAS  Google Scholar 

  20. Merten, O. W., Geny-Fiamma, C., and Douar, A. M. (2005) Current issues in adeno-associated viral vector production. Gene Ther 12, (Suppl 1), S51–61.

    Article  PubMed  CAS  Google Scholar 

  21. O'Reilly, D. R., Miller, L. K., and Verne, A. L. (1994), Baculovirus Expression Vectors: A Laboratory Manual. Freeman: New York.

    Google Scholar 

  22. King, L. A., and Possee, R. D. (1992), The Baculovirus Expression Vector System: A Laboratory Guide. Chapman & Hall: London.

    Book  Google Scholar 

  23. Kost, T., Condreay, J., and Jarvis, D. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23, (5), 567–75.

    Article  PubMed  CAS  Google Scholar 

  24. Kost, T. A., and Condreay, J. P. (2002) Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol 20, (4), 173–180.

    Article  PubMed  CAS  Google Scholar 

  25. Hu, Y. C. (2006) Baculovirus vectors for gene therapy. Adv Virus Res 68, 287–320.

    Article  PubMed  CAS  Google Scholar 

  26. Kaikkonen, M. U., Raty, J. K., Airenne, K. J., Wirth, T., Heikura, T., and Yla-Herttuala, S. (2006) Truncated vesicular stomatitis virus G protein improves baculovirus transduction efficiency in vitro and in vivo. Gene Ther 13, 304–12.

    Article  PubMed  CAS  Google Scholar 

  27. Raty, J. K., Airenne, K. J., Marttila, A. T., Marjomaki, V., Hytonen, V. P., Lehtolainen, P., Laitinen, O. H., Mahonen, A. J., Kulomaa, M. S., and Yla-Herttuala, S. (2004) Enhanced Gene Delivery by Avidin-Displaying Baculovirus. Mol Ther 9, 282–291.

    Article  PubMed  CAS  Google Scholar 

  28. Barsoum, J. (1999) Concentration of recombinant baculovirus by cation-exchange chromatography. Biotechniques 26, (5), 834–6, 838, 840.

    PubMed  CAS  Google Scholar 

  29. Wu, C., Soh, K. Y., and Wang, S. (2007) Ion-exchange membrane chromatography method for rapid and efficient purification of recombinant baculovirus and baculovirus gp64 protein. Hum Gene Ther 18, (7), 665–72.

    Article  PubMed  CAS  Google Scholar 

  30. Transfiguracion, J., Jorio, H., Meghrous, J., Jacob, D., and Kamen, A. (2007) High yield purification of functional baculovirus vectors by size exclusion chromatography. J Virol Methods 142, (1–2), 21–8.

    Article  PubMed  CAS  Google Scholar 

  31. Blissard, G. W., and Rohrmann, G. F. (1990) Baculovirus Diversity and Molecular Biology. Annu Rev Entomol 35, 127–55.

    Article  PubMed  CAS  Google Scholar 

  32. Roldao, A., Vieira, H. L., Charpilienne, A., Poncet, D., Roy, P., Carrondo, M. J., Alves, P. M., and Oliveira, R. (2007) Modeling rotavirus-like particles production in a baculovirus expression vector system: Infection kinetics, baculovirus DNA replication, mRNA synthesis and protein production. J Biotechnol 128, (4), 875–94.

    Article  PubMed  CAS  Google Scholar 

  33. Palomares, L. A., Estrada-Mondaca, S., and Ramírez, O. (2006) Principles and Applications of the Insect Cell-Baculovirus Expression Vector System. In Cell culture technology for pharmaceutical and cell-based therapies, Ozturk, S. S.; Hu, W.-S., Eds. Taylor & Francis: New York, pp. 417–431.

    Google Scholar 

  34. Lo, H. R., and Chao, Y. C. (2004) Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnol Prog 20, 354–60.

    Article  PubMed  CAS  Google Scholar 

  35. Altaras, N. E., Aunins, J. G., Evans, R. K., Kamen, A., Konz, J. O., and Wolf, J. J. (2005) Production and formulation of adenovirus vectors. Adv Biochem Eng Biotechnol 99, 193–260.

    PubMed  CAS  Google Scholar 

  36. Urabe, M., Xin, K., Obara, Y., Nakakura, T., Mizukami, H., Kume, A., Okuda, K., and Ozawa, K. (2006) Removal of Empty Capsids from Type 1 Adeno-Associated Virus Vector Stocks by Anion-Exchange Chromatography Potentiates Transgene Expression. Mol Ther 13, 823–828.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marcos Sousa for the expertise on the upstream processing and Dr. Uwe Gottschalk from Sartorius Stedim Biotech (Göttingen, Germany) for providing the Sartobind membrane adsorber units and the ultrafiltration device. Financial support from the European Commission (Baculogenes, LSH-2005–1.4.4.6) and the Portuguese Fundação para a Ciência e Tecnologia (SFRH/BD/31257/2006) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel J.T. Carrondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vicente, T., Peixoto, C., Carrondo, M.J., Alves, P.M. (2009). Virus Production for Clinical Gene Therapy. In: Walther, W., Stein, U. (eds) Gene Therapy of Cancer. Methods in Molecular Biology™, vol 542. Humana Press. https://doi.org/10.1007/978-1-59745-561-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-561-9_24

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-85-5

  • Online ISBN: 978-1-59745-561-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics