Skip to main content

Genetic Analysis of the Vertebrate Hedgehog-Signaling Pathway Using Muscle Cell Fate Specification in the Zebrafish Embryo

  • Protocol
  • 2067 Accesses

Part of the book series: Methods Inmolecular Biology™ ((MIMB,volume 397))

Abstract

Over the recent years, a large number of embryological studies with the zebrafish have provided substantial evidence of its usefulness for the investigation of the genetic and cellular basis of vertebrate development. With regard to the Hedgehog (Hh) pathway, forward as well as reverse genetic approaches in this organism have not only validated the roles of evolutionarily conserved players of the signaling cascade, but have also contributed to the isolation of several novel components that had remained unidentified through screens in other animal models. Here, the author describes a whole mount antibody labeling method that allows the detection of three unique muscle cell fates in the zebrafish embryo, which are induced by distinct levels and timing of Hh-signaling activity. This technique provides a rapid and convenient assay that can be utilized for the evaluation of effects of loss- or gain-of-function of any gene on the levels of Hh pathway activation during embryogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schauerte, H. E., van Eeden, F. J., Fricke, C., Odenthal, J., Strahle, U., and Haffter, P. (1998) Sonic hedgehog is not required for the induction of the medial floor plate cells in the zebrafish. Development 125, 2983–2993.

    CAS  PubMed  Google Scholar 

  2. Koudijs, M. J., den Broeder, M. J., Keijser, A., et al. (2005) The zebrafish mutants dre, uki, and lep encode negative regulators of the Hedgehog signaling pathway. PLos Genet. 1(2), e19.

    Article  PubMed  Google Scholar 

  3. Nakano, Y., Kim, H. R., Kawakami, A., Roy, S., Schier, A. F., and Ingham, P. W. (2004) Inactivation of dispatched 1 by the chameleon mutation disrupts Hedgehog signaling in the zebrafish embryo. Dev. Biol. 269, 381–392.

    Article  CAS  PubMed  Google Scholar 

  4. Barresi, M. J., Stickney, H. L., and Devoto, S. H. (2000) The zebrafish slow-muscle-omitted gene product is required for Hedgehog signal transduction and the development of slow muscle identity. Development 127, 2189–2199.

    CAS  PubMed  Google Scholar 

  5. Varga, Z. M., Amores, A., Lewis, K. E., et al. (2001) Zebrafish Smoothened functions in ventral neural tube specification and axon tract formation. Development 128, 3497–3509.

    CAS  PubMed  Google Scholar 

  6. Chen, W., Burgess, S., and Hopkins, N. (2001) Analysis of the zebrafish Smoothened mutant reveals conserved and divergent functions of Hedgehog activity. Development 128, 2385–2396.

    CAS  PubMed  Google Scholar 

  7. Karlstrom, R. O., Tyurina, O. V., Kawakami, A., et al. (2003) Genetic analysis of zebrafish gli1 and gli2 reveals divergent requirements for gli genes in vertebrate development. Development 130, 1549–1564.

    Article  CAS  PubMed  Google Scholar 

  8. Karlstrom, R. O., Talbot, W. S., and Schier, A. F. (1999) Comparative synteny cloning of zebrafish you-too: mutations in the Hedgehog target gli2 affect ventral forebrain patterning. Genes Dev. 13, 388–393.

    Article  CAS  PubMed  Google Scholar 

  9. Wolff, C., Roy, S., Lewis, K. E., et al. (2004) Iguana encodes a novel zinc-finger protein with coiled-coil domains essential for Hedghog signal transduction in the zebrafish embryo. Genes Dev. 18, 1565–1576.

    Article  CAS  PubMed  Google Scholar 

  10. Sekimizu, K., Nishioka, N., Sasaki, H., Takeda, H., Karlstrom, R. O., and Kawakami, A. (2004) The zebrafish iguana locus encodes Dzip1, a novel zinc-finger protein required for proper regulation of Hedgehog signaling. Development 131, 2521–2532.

    Article  CAS  PubMed  Google Scholar 

  11. Kawakami, A., Nojima, Y., Toyoda, A., et al. (2005) The zebrafish secreted matrix protein You/Scube2 is implicated in long range regulation of Hedgehog signaling. Curr. Biol. 15, 480–488.

    Article  CAS  PubMed  Google Scholar 

  12. Woods, I. G. and Talbot, W. S. (2005) The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish. PLoS Biol. 3, e66.

    Article  PubMed  Google Scholar 

  13. Wolff, C., Roy, S., and Ingham, P. W. (2003) Multiple muscle cell identities induced by distinct levels and timing of Hedgehog activity in the zebrafish embryo. Curr. Biol. 13, 1169–1181.

    Article  CAS  PubMed  Google Scholar 

  14. Tay, S. Y., Ingham, P. W., and Roy, S. (2005) A homologue of the Drosophila kinesin-like protein Costal2 regulates Hedgehog signal transduction in the vertebrate embryo. Development 132, 625–634.

    Article  CAS  PubMed  Google Scholar 

  15. Wilbanks, A. M., Fralish, G. B., Kirby, M. L., Barak, L. S., Li, Y. X., and Caron, M. G. (2004) β-arrestin 2 regulates zebrafish development through the Hedgehog signaling pathway. Science 306, 2264–2267.

    Article  CAS  PubMed  Google Scholar 

  16. Devoto, S. H., Melancon, E., Eisen, J. S., and Westerfield, M. (1996) Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122, 3371–3380.

    CAS  PubMed  Google Scholar 

  17. Lewis, K. E., Currie, P. D., Roy, S., Schauerte, H., Haffter, P., and Ingham, P. W. (1999) Control of muscle cell-type specification in the zebrafish embryo by Hedgehog signaling. Dev. Biol. 216, 469–480.

    Article  CAS  PubMed  Google Scholar 

  18. Hammerschmidt, M., Bitgood, M. J., and McMahon, A. P. (1996) Protein kinase A is a common negative regulator of Hedgehog signaling in the vertebrate embryo. Genes Dev. 10, 647–658.

    Article  CAS  PubMed  Google Scholar 

  19. Roy, S., Wolff, C., and Ingham, P. W. (2001) The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo. Genes Dev. 15, 1563–1576.

    Article  CAS  PubMed  Google Scholar 

  20. Hatta, K., Bremiller, R., Westerfield, M., and Kimmel, C. B. (1991) Diversity of expression of Engrailed-like antigens in zebrafish. Development 112, 821–832.

    CAS  PubMed  Google Scholar 

  21. Westerfield, M. (ed.) (2000) The Zebrafish Book, University of Oregon Press, Oregon.

    Google Scholar 

  22. Nusslein-Volhard, C. and Dahm, R. (ed.) (2002) Zebrafish: A Practical Approach, Oxford University Press, Oxford.

    Google Scholar 

  23. Detrich, H. W. 3rd, Zon, L. I., and Westerfield, M. (ed.) (2004) Zebrafish: Cellular and Developmental Biology, Elsevier Academic Press, San Diego.

    Google Scholar 

  24. Detrich, H. W. 3rd, Zon, L. I., and Westerfield, M. (ed.) (2004) Zebrafish: Genetics, Genomics and Informatics, Elsevier Academic Press, San Diego.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Roy, S. (2007). Genetic Analysis of the Vertebrate Hedgehog-Signaling Pathway Using Muscle Cell Fate Specification in the Zebrafish Embryo. In: Horabin, J.I. (eds) Hedgehog Signaling Protocols. Methods Inmolecular Biology™, vol 397. Humana Press. https://doi.org/10.1007/978-1-59745-516-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-516-9_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-692-4

  • Online ISBN: 978-1-59745-516-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics