Skip to main content

Endocannabinoids and Their Synthetic Analogs

  • Chapter
Book cover The Cannabinoid Receptors

Part of the book series: The Receptors ((REC))

Abstract

The discovery of endogenous cannabinoids has provided a basis for understanding the structural requirements for activation of the two known cannabinoid receptors CB1 and CB2. The endocannabinoids are fatty acid analogs represented by N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG). These endogenous ligands are biosynthesized and deactivated by a number of enzymes and a transporter system, all of which can be modulated by ligands whose structures can encompass the essential endocannabinoid features. For this reason a significant amount of work has sought to develop synthetic ligands structurally related to AEA and 2-AG. These ligands are being used to explore the structural features of the different cannabinergic proteins and have also proven to be valuable pharmacological tools for studying the physiology and biochemistry of the endocannabinoid system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Devane WA, Dysarz III FA, Johnson MR, et al Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34:605–13.

    CAS  PubMed  Google Scholar 

  2. Matsuda LA, Lolait SJ, Brownstein MJ, et al. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346:561–4.

    CAS  PubMed  Google Scholar 

  3. Gerard CM, Mollereau C, Vassart G, et al. Molecular cloning of a human brain cannabinoid receptor which is also expressed in testis. Biochem J. 1991;279:129–34.

    CAS  PubMed  Google Scholar 

  4. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993; 365:61–5.

    CAS  PubMed  Google Scholar 

  5. Jarai Z, Wagner JA, Varga K, et al. Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Proc Natl Acad Sci USA. 1999;96:14136–41.

    Google Scholar 

  6. Wiley JL, Martin BR. Cannabinoid pharmacology: implications for additional cannabinoid receptor subtypes. Chem Phys Lipids. 2002;121:57–63.

    CAS  PubMed  Google Scholar 

  7. Pistis M, Perra S, Pillolla G, et al. Cannabinoids modulate neuronal firing in the rat basolateral amygdala: evidence for CB1- and non-CB1-mediated actions. Neuropharmacol. 2004;46:115–25.

    CAS  Google Scholar 

  8. Begg M, Pacher P, Batkai S, et al. Evidence for novel cannabinoid receptors. Pharmacol Ther. 2005;106:133–45.

    CAS  PubMed  Google Scholar 

  9. Di Marzo V, Bisogno T, De Petrocellis L. Endocannabinoids: new targets for drug development. Curr Pharm Des. 2000;6:1361–80.

    PubMed  Google Scholar 

  10. Goutopoulos A, Makriyannis A. From cannabis to cannabinergics new therapeutic opportunities. Pharmacol Ther. 2002;95:103–17.

    CAS  PubMed  Google Scholar 

  11. Di Marzo V, Bifulco M, De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov. 2004;3:771–84.

    PubMed  Google Scholar 

  12. Matsuda LA. Molecular aspects of cannabinoid receptors. Crit Rev Neurobiol. 1997;11:143–66.

    CAS  PubMed  Google Scholar 

  13. Rhee MH, Bayewitch M, Avidor-Reiss T, et al. Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J Neurochem. 1998;71:1525–34.

    CAS  PubMed  Google Scholar 

  14. Oz M. Receptor-independent actions of cannabinoids on cell membranes: Focus on endocannabinoids. Pharmacol Ther. 2006;111:114–44.

    CAS  PubMed  Google Scholar 

  15. Felder CC, Briley EM, Axelrod J, et al. Anandamide, an endogenous cannabimimetic eicosanoid, binds to the cloned human cannabinoid receptor and stimulates receptor-mediated signal transduction. Proc Natl Acad Sci USA. 1993;90:7656–60.

    CAS  PubMed  Google Scholar 

  16. Mackie K, Devane WA, Hille B. Anandamide, an endogenous cannabinoid, inhibits calcium currents as a partial agonist in N18 neuroblastoma cells. Mol Pharmacol. 1993;44:498–503.

    CAS  PubMed  Google Scholar 

  17. Mackie K, Lai Y, Westenbroek R, et al. Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J Neurosci. 1995;15:6552–61.

    CAS  PubMed  Google Scholar 

  18. McAllister SD, Griffin G, Satin LS, et al. Cannabinoid receptors can activate and inhibit G protein-coupled inwardly rectifying potassium channels in a xenopus oocyte expression system. J Pharmacol Exp Ther. 1999;291:618–26.

    CAS  PubMed  Google Scholar 

  19. Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther. 1997;74:129–80.

    CAS  PubMed  Google Scholar 

  20. Felder CC, Joyce KE, Briley EM, et al. Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol. 1995;48:443–50.

    CAS  PubMed  Google Scholar 

  21. Howlett AC, Barth F, Bonner TI, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002;54:161–202.

    CAS  PubMed  Google Scholar 

  22. Walter L, Stella N. Cannabinoids and neuroinflammation. Br J Pharmacol. 2004;141:775–85.

    CAS  PubMed  Google Scholar 

  23. Eljaschewitsch E, Witting A, Mawrin C, et al. The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron. 2006;49:67–79.

    CAS  PubMed  Google Scholar 

  24. Maldonado R, Valverde O, Berrendero F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci. 2006;29:225–32.

    CAS  PubMed  Google Scholar 

  25. Basavarajappa BS, Hungund BL. Role of the endocannabinoid system in the development of tolerance to alcohol. Alcohol Alcohol. 2005;40:15–24.

    CAS  PubMed  Google Scholar 

  26. Vinod KY, Hungund BL. Endocannabinoid lipids and mediated system: implications for alcoholism and neuropsychiatric disorders. Life Sci. 2005;77:1569–83.

    CAS  PubMed  Google Scholar 

  27. Rice AS, Farquhar-Smith WP, Nagy I. Endocannabinoids and pain: spinal and peripheral analgesia in inflammation and neuropathy. Prostaglandins Leukot Essent Fatty Acids. 2002;66:243–56.

    CAS  PubMed  Google Scholar 

  28. La Rana G, Russo R, Campolongo P, et al. Modulation of neuropathic and inflammatory pain by the endocannabinoid transport inhibitor AM404 [N-(4-hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide]. J Pharmacol Exp Ther. 2006;317:1365–71.

    PubMed  Google Scholar 

  29. Juan-Pico P, Fuentes E, Javier Bermudez-Silva F, et al. Cannabinoid receptors regulate Ca2 + signals and insulin secretion in pancreatic β-cell. Cell Calcium. 2006;39:155–62.

    CAS  PubMed  Google Scholar 

  30. Baker D, Pryce G, Croxford JL, et al. Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J. 2001;15:300–2.

    CAS  PubMed  Google Scholar 

  31. Malfitano AM, Matarese G, Bifulco M. From cannabis to endocannabinoids in multiple sclerosis: a paradigm of central nervous system autoimmune diseases. Curr Drug Targets CNS Neurol Disord. 2005;4:667–75.

    CAS  PubMed  Google Scholar 

  32. Viveros MP, Marco EM, File SE. Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav. 2005;81:331–42.

    CAS  PubMed  Google Scholar 

  33. Cravatt BF, Lichtman AH. The endogenous cannabinoid system and its role in nociceptive behavior. J Neurobiol. 2004;61:149–60.

    CAS  PubMed  Google Scholar 

  34. Cota D, Marsicano G, Lutz B, et al. Endogenous cannabinoid system as a modulator of food intake. Int J Obes Relat Metab Disord. 2003;27:289–301.

    CAS  PubMed  Google Scholar 

  35. Pagotto U, Vicennati V, Pasquali R. The endocannabinoid system and the treatment of obesity. Ann Med. 2005;37:270–5.

    CAS  PubMed  Google Scholar 

  36. Martinez-Gonzalez D, Bonilla-Jaime H, Morales-Otal A, et al. Oleamide and anandamide effects on food intake and sexual behavior of rats. Neurosci Lett. 2004;364:1–6.

    CAS  PubMed  Google Scholar 

  37. Pazos MR, Nunez E, Benito C, et al. Role of the endocannabinoid system in Alzheimer’s disease: new perspectives. Life Sci. 2004;75:1907–15.

    CAS  PubMed  Google Scholar 

  38. Mallat A, Lotersztajn S. Endocannabinoids as novel mediators of liver diseases. J Endocrinol Invest. 2006;29:58–65.

    CAS  PubMed  Google Scholar 

  39. Pacher P, Batkai S, Kunos G. Blood pressure regulation by endocannabinoids and their receptors. Neuropharmacology. 2005;48:1130–8.

    CAS  PubMed  Google Scholar 

  40. Lunn CA, Fine JS, Rojas-Triana A, et al. A novel cannabinoid peripheral cannabinoid receptor-selective inverse agonist blocks leukocyte recruitment in vivo. J Pharmacol Exp Ther. 2006;316:780–8.

    CAS  PubMed  Google Scholar 

  41. Lu D, Vemuri VK, Duclos RI, Jr., et al. The cannabinergic system as a target for anti-inflammatory therapies. Curr Top Med Chem. 2006;6:1401–26.

    CAS  PubMed  Google Scholar 

  42. Milman G, Maor Y, Abu-Lafi S, et al. N-Arachidonoyl L-serine, an endocannabinoid-like brain constituent with vasodilatory properties. Proc Natl Acad Sci USA. 2006;103:2428–33.

    CAS  PubMed  Google Scholar 

  43. Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–9.

    CAS  PubMed  Google Scholar 

  44. Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50:83–90.

    CAS  PubMed  Google Scholar 

  45. Breivogel CS, Selley DE, Childers SR. Cannabinoid receptor agonist efficacy for stimulating [35S]GTPγS binding to rat cerebellar membranes correlates with agonist-induced decreases in GDP affinity. J Biol Chem. 1998;273:16865–73.

    CAS  PubMed  Google Scholar 

  46. Natarajan V, Reddy PV, Schmid PC, et al. N-Acylation of ethanolamine phospholipids in canine myocardium. Biochim Biophys Acta. 1982;712:342–55.

    CAS  PubMed  Google Scholar 

  47. Okamoto Y, Morishita J, Tsuboi K, et al. Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem. 2004;279:5298–305.

    CAS  PubMed  Google Scholar 

  48. Wang J, Okamoto Y, Morishita J, et al. Functional analysis of the purified anandamide-generating phospholipase D as a member of the metallo-β-lactamase family. J Biol Chem. 2006;281:12325–35.

    CAS  PubMed  Google Scholar 

  49. Liu J, Wang L, Harvey-White J, et al. A biosynthetic pathway for anandamide. Proc Natl Acad Sci USA. 2006;103:13345–50.

    CAS  PubMed  Google Scholar 

  50. Fride E, Mechoulam R. Pharmacological activity of the cannabinoid receptor agonist, anandamide, a brain constituent. Eur J Pharmacol. 1993;231:313–4.

    CAS  PubMed  Google Scholar 

  51. Vogel Z, Barg J, Levy R, et al. Anandamide, a brain endogenous compound, interacts specifically with cannabinoid receptors and inhibits adenylate cyclase. J Neurochem. 1993;61:352–5.

    CAS  PubMed  Google Scholar 

  52. Pertwee RG, Stevenson LA, Elrick DB, et al. Inhibitory effects of certain enantiomeric cannabinoids in the mouse vas deferens and the myenteric plexus preparation of guinea-pig small intestine. Br J Pharmacol. 1992;105:980–4.

    CAS  PubMed  Google Scholar 

  53. Smith PB, Compton DR, Welch SP, et al. The pharmacological activity of anandamide, a putative endogenous cannabinoid, in mice. J Pharmacol Exp Ther. 1994;270:219–27.

    PubMed  Google Scholar 

  54. Deutsch DG, Chin SA. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol. 1993;46:791–6.

    CAS  PubMed  Google Scholar 

  55. Egertova M, Cravatt BF, Elphick MR. Comparative analysis of fatty acid amide hydrolase and CB1 cannabinoid receptor expression in the mouse brain: evidence of a widespread role for fatty acid amide hydrolase in regulation of endocannabinoid signaling. Neuroscience. 2003;119:481–96.

    CAS  PubMed  Google Scholar 

  56. Cravatt BF, Giang DK, Mayfield SP, et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996;384:83–7.

    CAS  PubMed  Google Scholar 

  57. Giang DK, Cravatt BF. Molecular characterization of human and mouse fatty acid amide hydrolases. Proc Natl Acad Sci USA. 1997;94:2238–42.

    CAS  PubMed  Google Scholar 

  58. Bracey MH, Hanson MA, Masuda KR, et al. Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science. 2002;298:1793–6.

    CAS  PubMed  Google Scholar 

  59. Abadji V, Lin S, Taha G, et al. (R)-Methanandamide: A chiral novel anandamide possessing higher potency and metabolic stability. J Med Chem. 1994;37:1889–93.

    CAS  PubMed  Google Scholar 

  60. Beltramo M, Stella N, Calignano A, et al. Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science. 1997;277:1094–7.

    CAS  PubMed  Google Scholar 

  61. Piomelli D, Beltramo M, Glasnapp S, et al. Structural determinants for recognition and translocation by the anandamide transporter. Proc Natl Acad Sci USA. 1999;96:5802–7.

    CAS  PubMed  Google Scholar 

  62. Hanus L, Gopher A, Almog S, et al. Two new unsaturated fatty acid ethanolamides in brain that bind to the cannabinoid receptor. J Med Chem. 1993;36:3032–4.

    CAS  PubMed  Google Scholar 

  63. Barg J, Fride E, Hanus L, et al. Cannabinomimetic behavioral effects of and adenylate cyclase inhibition by two new endogenous anandamides. Eur J Pharmacol. 1995;287:145–52.

    CAS  PubMed  Google Scholar 

  64. Priller J, Briley EM, Mansouri J, et al. Meadethanolamide, a novel eicosanoid, is an agonist for the central (CB1) and peripheral (CB2) cannabinoid receptors. Mol Pharmacol. 1995;48:288–92.

    CAS  PubMed  Google Scholar 

  65. Stella N, Schweitzer P, Piomelli D. A second endogenous cannabinoid that modulates long-term potentiation. Nature. 1997;388:773–8.

    CAS  PubMed  Google Scholar 

  66. Sugiura T, Kishimoto S, Oka S, et al. Biochemistry, pharmacology and physiology of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Prog Lipid Res. 2006;45:405–46.

    CAS  PubMed  Google Scholar 

  67. Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun. 1995;215:89–97.

    CAS  PubMed  Google Scholar 

  68. Di Marzo V, De Petrocellis L, Sugiura T, et al. Potential biosynthetic connections between the two cannabimimetic eicosanoids, anandamide and 2-arachidonoylglycerol, in mouse neuroblastoma cells. Biochem Biophys Res Commun. 1996;227:281–8.

    PubMed  Google Scholar 

  69. Piomelli D, Beltramo M, Giuffrida A, et al. Endogenous cannabinoid signaling. Neurobiol Dis. 1998;5:462–73.

    CAS  PubMed  Google Scholar 

  70. Sugiura T, Waku K. 2-Arachidonoylglycerol and the cannabinoid receptors. Chem Phys Lipids. 2000;108:89–106.

    CAS  PubMed  Google Scholar 

  71. Dinh TP, Carpenter D, Leslie FM, et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA. 2002;99:10819–24.

    CAS  PubMed  Google Scholar 

  72. Pertwee RG. The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS J. 2005;7:E625–54.

    CAS  PubMed  Google Scholar 

  73. Di Marzo V. Biosynthesis and inactivation of endocannabinoids: Relevance to their proposed role as neuromodulators. Life Sci. 1999;65:645–55.

    PubMed  Google Scholar 

  74. Hanus L, Abu-Lafi S, Fride E, et al. 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci USA. 2001;98:3662–5.

    CAS  PubMed  Google Scholar 

  75. Suhara Y, Takayama H, Nakane S, et al. Synthesis and biological activities of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, and its metabolically stable ether-linked analogues. Chem Pharm Bull (Tokyo). 2000;48:903–7.

    CAS  Google Scholar 

  76. Shoemaker JL, Joseph BK, Ruckle MB, et al. The endocannabinoid noladin ether acts as a full agonist at human CB2 cannabinoid receptors. J Pharmacol Exp Ther. 2005;314:868–75.

    CAS  PubMed  Google Scholar 

  77. Shoemaker JL, Ruckle MB, Mayeux PR, et al. Agonist-directed trafficking of response by endocannabinoids acting at CB2 receptors. J Pharmacol Exp Ther. 2005;315:828–38.

    CAS  PubMed  Google Scholar 

  78. Oka S, Tsuchie A, Tokumura A, et al. Ether-linked analogue of 2-arachidonoylglycerol (noladin ether) was not detected in the brains of various mammalian species. Neurochem. 2003;85:1374–81.

    CAS  PubMed  Google Scholar 

  79. Porter AC, Sauer J-M, Knierman MD, et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther. 2002;301:1020–4.

    CAS  PubMed  Google Scholar 

  80. Bachur NR, Masek K, Melmon KL, et al. Fatty acid amides of ethanolamine in mammalian tissues. J Biol Chem. 1965;240:1019–24.

    CAS  PubMed  Google Scholar 

  81. Facci L, Toso RD, Romanello S, et al. Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci USA. 1995;92:3376–80.

    CAS  PubMed  Google Scholar 

  82. Franklin A, Parmentier-Batteur S, Walter L, et al. Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motility. J Neurosci. 2003;23:7767–75.

    CAS  PubMed  Google Scholar 

  83. LoVerme J, La Rana G, Russo R, et al. The search for the palmitoylethanolamide receptor. Life Sci. 2005;77:1685–98.

    CAS  PubMed  Google Scholar 

  84. Cravatt BF, Prospero-Garcia O, Siuzdak G, et al. Chemical characterization of a family of brain lipids that induce sleep. Science. 1995;268:1506–9.

    CAS  PubMed  Google Scholar 

  85. Mechoulam R, Fride E, Hanus L, et al. Anandamide may mediate sleep induction. Nature. 1997;389:25–6.

    CAS  PubMed  Google Scholar 

  86. Boger DL, Fecik RA, Patterson JE, et al. Fatty acid amide hydrolase substrate specificity. Bioorg Med Chem Lett. 2000;10:2613–6.

    CAS  PubMed  Google Scholar 

  87. Leggett JD, Aspley S, Beckett SR, et al. Oleamide is a selective endogenous agonist of rat and human CB1 cannabinoid receptors. Br J Pharmacol. 2004;141:253–62.

    CAS  PubMed  Google Scholar 

  88. Huang SM, Bisogno T, Trevisani M, et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA. 2002;99:8400–5.

    CAS  PubMed  Google Scholar 

  89. Bisogno T, Melck D, Bobrov M, et al. N-Acyl-dopamines: novel synthetic CB1 cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem J. 2000;351:817–24.

    CAS  PubMed  Google Scholar 

  90. Martinez A, Treston AM. Where does amidation take place? Mol Cell Endocrinol. 1996;123:113–7.

    CAS  PubMed  Google Scholar 

  91. Burstein SH, Rossetti RG, Yagen B, et al. Oxidative metabolism of anandamide. Prostaglandins Other Lipid Mediat. 2000;61:29–41.

    CAS  PubMed  Google Scholar 

  92. Huang SM, Bisogno T, Petros TJ, et al. Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain. J Biol Chem. 2001;276:42639–44.

    CAS  PubMed  Google Scholar 

  93. Grazia Cascio M, Minassi A, Ligresti A, et al. A structure-activity relationship study on N-arachidonoyl-amino acids as possible endogenous inhibitors of fatty acid amide hydrolase. Biochem Biophys Res Commun. 2004;314:192–6.

    CAS  PubMed  Google Scholar 

  94. Saghatelian A, McKinney MK, Bandell M, et al. A FAAH-regulated class of N-acyl taurines that activates TRP ion channels. Biochemistry. 2006;45:9007–15.

    CAS  PubMed  Google Scholar 

  95. Saghatelian A, Trauger SA, Want EJ, et al. Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry. 2004;43:14332–9.

    CAS  PubMed  Google Scholar 

  96. McKinney MK, Cravatt BF. Structure-based design of a FAAH variant that discriminates between the N-acyl ethanolamine and taurine families of signaling lipids. Biochemistry. 2006;45:9016–22.

    CAS  PubMed  Google Scholar 

  97. Schmid PC, Kuwae T, Krebsbach RJ, et al. Anandamide and other N-acylethanolamines in mouse peritoneal macrophages. Chem Phys Lipids. 1997;87:103–10.

    CAS  PubMed  Google Scholar 

  98. Lin S, Khanolkar AD, Fan P, et al. Novel analogues of arachidonylethanolamide (anandamide): affinities for the CB1 and CB2 cannabinoid receptors and metabolic stability. J Med Chem. 1998;41:5353–61.

    CAS  PubMed  Google Scholar 

  99. Berdyshev EV, Schmid PC, Krebsbach RJ, et al. Cannabinoid-receptor-independent cell signalling by N-acylethanolamines. Biochem J. 2001;360:67–75.

    CAS  PubMed  Google Scholar 

  100. Watanabe K, Matsunaga T, Nakamura S, et al. Pharmacological effects in mice of anandamide and its related fatty acid ethanolamides, and enhancement of cataleptogenic effect of anandamide by phenylmethylsulfonyl fluoride. Biol Pharm Bull. 1999;22:366–70.

    CAS  PubMed  Google Scholar 

  101. Maccarrone M, van der Stelt M, Rossi A, et al. Anandamide hydrolysis by human cells in culture and brain. J Biol Chem. 1998;273:32332–9.

    CAS  PubMed  Google Scholar 

  102. Maccarrone M, Cartoni A, Parolaro D, et al. Cannabimimetic activity, binding, and degradation of stearoylethanolamide within the mouse central nervous system. Mol Cell Neurosci. 2002;21:126–40.

    CAS  PubMed  Google Scholar 

  103. Movahed P, Joensson BAG, Birnir B, et al. Endogenous unsaturated C18 N-acylethanolamines are vanilloid receptor (TRPV1) agonists. J Biol Chem. 2005;280:38496–504.

    CAS  PubMed  Google Scholar 

  104. Bisogno T, Delton-Vandenbroucke I, Milone A, et al. Biosynthesis and inactivation of N-arachidonoylethanolamine (anandamide) and N-docosahexaenoylethanolamine in bovine retina. Arch Biochem Biophys. 1999;370:300–7.

    CAS  PubMed  Google Scholar 

  105. Sugiura T, Kodaka T, Nakane S, et al. Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor. Structure-activity relationship of 2-arachidonoylglycerol, ether-linked analogues, and related compounds. J Biol Chem. 1999;274:2794–801.

    CAS  PubMed  Google Scholar 

  106. Poling JS, Rogawski MA, Salem N, Jr., et al. Anandamide, an endogenous cannabinoid, inhibits Shaker-related voltage-gated K+ channels. Neuropharmacol. 1996;35:983–91.

    CAS  Google Scholar 

  107. Ben-Shabat S, Fride E, Sheskin T, et al. An entourage effect: Inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol. 1998;353:23–31.

    CAS  PubMed  Google Scholar 

  108. Hampson AJ, Hill WA, Zan-Phillips M, et al. Anandamide hydroxylation by brain lipoxygenase: metabolite structures and potencies at the cannabinoid receptor. Biochim Biophys Acta. 1995;1259:173–9.

    PubMed  Google Scholar 

  109. Edgemond WS, Hillard CJ, Falck JR, et al. Human platelets and polymorphonuclear leukocytes synthesize oxygenated derivatives of arachidonylethanolamide (anandamide): their affinities for cannabinoid receptors and pathways of inactivation. Mol Pharmacol. 1998;54:180–8.

    CAS  PubMed  Google Scholar 

  110. Ueda N, Yamamoto K, Yamamoto S, et al. Lipoxygenase-catalyzed oxygenation of arachidonylethanolamide, a cannabinoid receptor agonist. Biochim Biophys Acta. 1995;1254:127–34.

    PubMed  Google Scholar 

  111. van der Stelt M, van Kuik JA, Bari M, et al. Oxygenated metabolites of anandamide and 2-arachidonoylglycerol: Conformational analysis and interaction with cannabinoid receptors, membrane transporter, and fatty acid amide hydrolase. J Med Chem. 2002;45:3709–20.

    PubMed  Google Scholar 

  112. Pinto JC, Potie F, Rice KC, et al. Cannabinoid receptor binding and agonist activity of amides and esters of arachidonic acid. Mol Pharmacol. 1994;46:516–22.

    CAS  PubMed  Google Scholar 

  113. Hillard CJ, Manna S, Greenberg MJ, et al. Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1). J Pharmacol Exp Ther. 1999;289:1427–33.

    CAS  PubMed  Google Scholar 

  114. Appendino G, Minassi A, Berton L, et al. Oxyhomologues of anandamide and related endolipids: chemoselective synthesis and biological activity. J Med Chem. 2006;49:2333–8.

    CAS  PubMed  Google Scholar 

  115. Wang Y, Xu J, Uveges A, et al. A novel scintillation proximity assay for fatty acid amide hydrolase compatible with inhibitor screening. Anal Biochem. 2006;354:35–42.

    CAS  PubMed  Google Scholar 

  116. Lang W, Qin C, Lin S, et al. Substrate specificity and stereoselectivity of rat brain microsomal anandamide amidohydrolase. J Med Chem. 1999;42:896–902.

    CAS  PubMed  Google Scholar 

  117. Khanolkar AD, Abadji V, Lin S, et al. Head group analogs of arachidonylethanolamide, the endogenous cannabinoid ligand. J Med Chem. 1996;39:4515–9.

    CAS  PubMed  Google Scholar 

  118. Adams IB, Ryan W, Singer M, et al. Pharmacological and behavioral evaluation of alkylated anandamide analogs. Life Sci. 1995;56:2041–8.

    CAS  PubMed  Google Scholar 

  119. Sheskin T, Hanus L, Slager J, et al. Structural requirements for binding of anandamide-type compounds to the brain cannabinoid receptor. J Med Chem. 1997;40:659–67.

    CAS  PubMed  Google Scholar 

  120. Ryan WJ, Banner K, Crocker PJ, et al. Synthesis of (+)– and (–)–2–methylarachidonyl-2’-fluoroethylamide (O-689). Bioorg Med Chem Lett. 1997;7:2669–72.

    CAS  Google Scholar 

  121. Goutopoulos A, Fan P, Khanolkar AD, et al. Stereochemical selectivity of methanandamides for the CB1 and CB2 cannabinoid receptors and their metabolic stability. Bioorg Med Chem. 2001;9:1673–84.

    CAS  PubMed  Google Scholar 

  122. Adams IB, Ryan W, Singer M, et al. Evaluation of cannabinoid receptor binding and in vivo activities for anandamide analogs. J Pharmacol Exp Ther. 1995;273:1172–81.

    CAS  PubMed  Google Scholar 

  123. Barnett-Norris J, Hurst DP, Lynch DL, et al. Conformational memories and the endocannabinoid binding site at the cannabinoid CB1 receptor. J Med Chem. 2002;45:3649–59.

    CAS  PubMed  Google Scholar 

  124. Tian X, Guo J, Yao F, et al. The conformation, location, and dynamic properties of the endocannabinoid ligand anandamide in a membrane bilayer. J Biol Chem. 2005;280:29788–95.

    CAS  PubMed  Google Scholar 

  125. Barnett-Norris J, Hurst DP, Buehner K, et al. Agonist alkyl tail interaction with cannabinoid CB1 receptor V6.43/I6.46 groove induces a helix 6 active conformation. Int J Quantum Chem. 2002;88:76–86.

    CAS  Google Scholar 

  126. Ng EW, Aung MM, Abood ME, et al. Unique analogs of anandamide: Arachidonyl ethers and carbamates and norarachidonyl carbamates and ureas. J Med Chem. 1999;42:1975–81.

    CAS  PubMed  Google Scholar 

  127. Parkkari T, Savinainen JR, Raitio KH, et al. Synthesis, cannabinoid receptor activity, and enzymatic stability of reversed amide derivatives of arachidonoyl ethanolamide. Bioorg Med Chem. 2006;14:5252–8.

    CAS  PubMed  Google Scholar 

  128. Ryan WJ, Banner KW, Wiley JL, et al. Potent anandamide analogs: the effect of changing the length and branching of the end pentyl chain. J Med Chem. 1997;40:3617–25.

    CAS  PubMed  Google Scholar 

  129. Seltzman HH, Fleming DN, Thomas BF, et al. Synthesis and pharmacological comparison of dimethylheptyl and pentyl analogs of anandamide. J Med Chem. 1997;40:3626–34.

    CAS  PubMed  Google Scholar 

  130. Di Marzo V, Bisogno T, De Petrocellis L, et al. Highly selective CB1 cannabinoid receptor ligands and novel CB1/VR1 vanilloid receptor “hybrid” ligands. Biochem Biophys Res Commun. 2001;281:444–51.

    PubMed  Google Scholar 

  131. Yu M, Ives D, Ramesha CS. Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. J Biol Chem. 1997;272:21181–6.

    CAS  PubMed  Google Scholar 

  132. Kozak KR, Rowlinson SW, Marnett LJ. Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J Biol Chem. 2000;275:33744–9.

    CAS  PubMed  Google Scholar 

  133. Berglund BA, Boring DL, Howlett AC. Investigation of structural analogs of prostaglandin amides for binding to and activation of CB1 and CB2 cannabinoid receptors in rat brain and human tonsils. Adv Exp Med Biol. 1999;469:527–33.

    CAS  PubMed  Google Scholar 

  134. Spada CS, Krauss AH, Woodward DF, et al. Bimatoprost and prostaglandin F selectively stimulate intracellular calcium signaling in different cat iris sphincter cells. Exp Eye Res. 2005;80:135–45.

    CAS  PubMed  Google Scholar 

  135. Nirodi CS, Crews BC, Kozak KR, et al. The glyceryl ester of prostaglandin E2 mobilizes calcium and activates signal transduction in RAW264.7 cells. Proc Natl Acad Sci USA. 2004;101:1840–5.

    CAS  PubMed  Google Scholar 

  136. Glass M, Hong J, Sato TA, et al. Misidentification of prostamides as prostaglandins. J Lipid Res. 2005;46:1364–8.

    CAS  PubMed  Google Scholar 

  137. Picone R, Fournier D, Makriyannis A. Ligand based structural studies of the CB1 cannabinoid receptor. J Pept Res. 2002;60:348–56.

    CAS  PubMed  Google Scholar 

  138. Li C, Xu W, Vadivel SK, et al. High affinity electrophilic and photoactivatable covalent endocannabinoid probes for the CB1 receptor. J Med Chem. 2005;48:6423–9.

    CAS  PubMed  Google Scholar 

  139. Suhara Y, Nakane S, Arai S, et al. Synthesis and biological activities of novel structural analogues of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand. Bioorg Med Chem Lett. 2001;11:1985–8.

    CAS  PubMed  Google Scholar 

  140. Parkkari T, Salo OM, Huttunen KM, et al. Synthesis and CB1 receptor activities of dimethylheptyl derivatives of 2-arachidonoyl glycerol (2-AG) and 2-arachidonyl glyceryl ether (2-AGE). Bioorg Med Chem. 2006;14:2850–8.

    CAS  PubMed  Google Scholar 

  141. Ghafouri N, Tiger G, Razdan RK, et al. Inhibition of monoacylglycerol lipase and fatty acid amide hydrolase by analogues of 2-arachidonoylglycerol. Br J Pharmacol. 2004;143:774–84.

    CAS  PubMed  Google Scholar 

  142. Parkkari T, Myllymaki M, Savinainen JR, et al. α-Methylated derivatives of 2-arachidonoyl glycerol: Synthesis, CB1 receptor activity, and enzymatic stability. Bioorg Med Chem Lett. 2006;16:2437–40.

    CAS  PubMed  Google Scholar 

  143. Bari M, Battista N, Fezza F, et al. New insights into endocannabinoid degradation and its therapeutic potential. Mini Rev Med Chem. 2006;6:257–68.

    CAS  PubMed  Google Scholar 

  144. McKinney MK, Cravatt BF. Structure and function of fatty acid amide hydrolase. Annu Rev Biochem. 2005;74:411–32.

    CAS  PubMed  Google Scholar 

  145. Bisogno T, Maurelli S, Melck D, et al. Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes. J Biol Chem. 1997;272:3315–23.

    CAS  PubMed  Google Scholar 

  146. Ueda N, Yamanaka K, Yamamoto S. Purification and characterization of an acid amidase selective for N-palmitoylethanolamine, a putative endogenous anti-inflammatory substance. J Biol Chem. 2001;276:35552–7.

    CAS  PubMed  Google Scholar 

  147. Ueda N, Tsuboi K, Lambert DM. A second N-acylethanolamine hydrolase in mammalian tissues. Neuropharmacol. 2005;48:1079–85.

    CAS  Google Scholar 

  148. Koutek B, Prestwich GD, Howlett AC, et al. Inhibitors of arachidonoyl ethanolamide hydrolysis. J Biol Chem. 1994;269:22937–40.

    CAS  PubMed  Google Scholar 

  149. Patterson J, Ollman I, Cravatt B, et al. Inhibition of oleamide hydrolase catalyzed hydrolysis of the endogenous sleep-inducing lipid cis-9-octadecenamide. J Am Chem Soc. 1996;118:5938–45.

    CAS  Google Scholar 

  150. Boger DL, Sato H, Lerner AE, et al. Trifluoromethyl ketone inhibitors of fatty acid amide hydrolase: a probe of structural and conformational features contributing to inhibition. Bioorg Med Chem Lett. 1999;9:265–70.

    CAS  PubMed  Google Scholar 

  151. Boger DL, Sato H, Lerner AE, et al. Exceptionally potent inhibitors of fatty acid amide hydrolase: the enzyme responsible for degradation of endogenous oleamide and anandamide. Proc Natl Acad Sci USA. 2000;97:5044–9.

    CAS  PubMed  Google Scholar 

  152. Boger DL, Miyauchi H, Hedrick MP. α-Keto heterocycle inhibitors of fatty acid amide hydrolase: Carbonyl group modification and α-substitution. Bioorg Med Chem Lett. 2001;11:1517–20.

    CAS  PubMed  Google Scholar 

  153. Boger DL, Miyauchi H, Du W, et al. Discovery of a potent, selective, and efficacious class of reversible α-ketoheterocycle inhibitors of fatty acid amide hydrolase effective as analgesics. J Med Chem. 2005;48:1849–56.

    CAS  PubMed  Google Scholar 

  154. Deutsch DG, Lin S, Hill WA, et al. Fatty acid sulfonyl fluorides inhibit anandamide metabolism and bind to the cannabinoid receptor. Biochem Biophys Res Commun. 1997;231:217–21.

    CAS  PubMed  Google Scholar 

  155. Alexander JP, Cravatt BF. Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes. Chem Biol. 2005;12:1179–87.

    CAS  PubMed  Google Scholar 

  156. Kathuria S, Gaetani S, Fegley D, et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med. 2003;9:76–81.

    CAS  PubMed  Google Scholar 

  157. Bisogno T, Melck D, De Petrocellis L, et al. Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase. Biochem Biophys Res Commun. 1998;248:515–22.

    CAS  PubMed  Google Scholar 

  158. Edgemond WS, Greenberg MJ, McGinley PJ, et al. Synthesis and characterization of diazomethylarachidonyl ketone: an irreversible inhibitor of N-arachidonylethanolamine amidohydrolase. J Pharmacol Exp Ther. 1998;286:184–90.

    CAS  PubMed  Google Scholar 

  159. Beltramo M, Piomelli D. Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2-arachidonylglycerol. Neuroreport. 2000;11:1231–5.

    CAS  PubMed  Google Scholar 

  160. Melck D, Bisogno T, De Petrocellis L, et al. Unsaturated long-chain N-acyl-vanillyl-amides (N-AVAMs): vanilloid receptor ligands that inhibit anandamide-facilitated transport and bind to CB1 cannabinoid receptors. Biochem Biophys Res Commun. 1999;262:275–84.

    CAS  PubMed  Google Scholar 

  161. Ortar G, Ligresti A, De Petrocellis L, et al. Novel selective and metabolically stable inhibitors of anandamide cellular uptake. Biochem Pharmacol. 2003;65:1473–81.

    CAS  PubMed  Google Scholar 

  162. Fegley D, Kathuria S, Mercier R, et al. Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by the hydrolysis-resistant inhibitor AM1172. Proc Natl Acad Sci USA. 2004;101:8756–61.

    CAS  PubMed  Google Scholar 

  163. De Petrocellis L, Bisogno T, Davis JB, et al. Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: Inhibitors of anandamide uptake with negligible capsaicin-like activity. FEBS Lett. 2000;483:52–6.

    PubMed  Google Scholar 

  164. Jarrahian A, Manna S, Edgemond WS, et al. Structure-activity relationships among N-arachidonylethanolamine (anandamide) head group analogues for the anandamide transporter. J Neurochem. 2000;74:2597–606.

    CAS  PubMed  Google Scholar 

  165. Lopez-Rodriguez ML, Viso A, Ortega-Gutierrez S, et al. Design, synthesis and biological evaluation of novel arachidonic acid derivatives as highly potent and selective endocannabinoid transporter inhibitors. J Med Chem. 2001;44:4505–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review is supported by grants from National Institute on Drug Abuse (DA03801, DA07215 and DA09158). We thank Drs. Richard I. Duclos, Jr. and Dai Lu for their discussions and technical help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Makriyannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vemuri, V.K., Makriyannis, A. (2009). Endocannabinoids and Their Synthetic Analogs. In: Reggio, P.H. (eds) The Cannabinoid Receptors. The Receptors. Humana Press. https://doi.org/10.1007/978-1-59745-503-9_2

Download citation

Publish with us

Policies and ethics