Skip to main content

The Human Leydig Cell

  • Chapter

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

This chapter provides an overview of the functional morphology of the mature human Leydig cell with emphasis on the adult developmental phase. The morphology of the organelles involved with steroidogenesis is described and correlated with pertinent literature on the location of the enzymes involved. A second major topic revolves around cholesterol uptake, transfer and storage within the cell, and delivery to the mitochondria. Morphological correlates include the endosomal system, lysosomes, microperoxisomes, lipid droplets, mitochondrial associated membranes, and lipid-associated membranes. The described intimate associations of these various intracellular structures suggest extensive membrane fusion being the mechanism of cholesterol transfer and delivery to the cristae compartment of the mitochondria. A revised structural analysis of mitochondria in these steroid-producing cells is included, as well as previously unpublished evidence of a continuity of microperoxisomes with the smooth endoplasmic reticulum. The emerging picture from these transmission electron microscopy images is an organelle assemblage which is highly dynamic, with membrane fusion likely being an important aspect of cellular function in steroidogenesis. Other ultrastructural features of Leydig cells are discussed, including “neuronal features.” A brief overview of the triphasic nature (fetal phase, neonatal phase, and adult phase) of Leydig cell development in human is provided, as is a description of the immature Leydig cells of childhood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leydig F. Zur anatomie der mannlichen geschlechtsorgane and analdrusen der saugethiere. Z Wissenschaftliche Zool 1850;2:1–57.

    Google Scholar 

  2. Christensen AK, Gillim S. The correlation of fine structure and function in steroid-secreting cells, with emphasis on those of the gonads. In: McKerns K, ed. The Gonads., AppletonCentury-Crofts, New York, 1969:415–487.

    Google Scholar 

  3. Christensen AK. Leydig cells. In: Handbook of Physiology, vol. 5, American Physiology Society, 1975:57–94.

    CAS  Google Scholar 

  4. Schulze C. Sertoli Cells and Leydig Cells in Man. SpringerVerlag, Berlin, 1984;88:1–104.

    Google Scholar 

  5. De Kretser DM, Kerr JB. The cytology of the testis. In: Knobil E, Neill JD, eds. The Physiology of Reproduction, Raven Press, New York, 1994;1170–1290.

    Google Scholar 

  6. Russell LD. Mammalian Leydig cell structure. In: Payne AH, Hardy MP, Russell LD, eds. The Leydig Cell: Cache River Press, Vienna, IL, 1996;43–96.

    Google Scholar 

  7. Pudney J. Comparative cytology of the Leydig cell. In: Payne AH, Hardy MP, Russell LD, eds. The Leydig Cell: Cache River Press, Vienna, IL, 1996;97–142.

    Google Scholar 

  8. Sharpe RM. The hormonal regulation of the Leydig cell. In: Finn CA, ed. Oxford Review of Reproductive Biology, Oxford University Press, Oxford, UK. 1982;4:241–317.

    Google Scholar 

  9. Saez JM. Leydig cells: Endocrine, paracrine, and autocrine regulation. Endocr Rev 1994;15:574–626.

    Article  PubMed  CAS  Google Scholar 

  10. Huhtaniemi I. Ontogeny of luteinizing hormone action in the male. In: Payne AH, Hardy MP, Russell LD, eds. The Leydig Cell: Cache River Press, Vienna, IL, 1996;365–382.

    Google Scholar 

  11. Mendis-Handagama SMLC. Luteinizing hormone on Leydig cell structure and function. Histol Histopathol 1997;12: 869–882.

    PubMed  CAS  Google Scholar 

  12. Lejeune H, Habert R, Saez JM. Origin, proliferation and differentiation of Leydig cells. J Mol Endocrinol 1998;20:1–25.

    Article  PubMed  CAS  Google Scholar 

  13. Haider SG. Cell Biology of Leydig cells in the testis. Int Rev Cytol 2004;233:181–241.

    Article  PubMed  CAS  Google Scholar 

  14. Samuels LT, Bussmann L, Matsumoto K. Organization of androgen biosynthesis in the testis. J Steroid Biochem 1975;6:291–296.

    Article  PubMed  CAS  Google Scholar 

  15. Sato B, Huseby RA, Samuels LT. The possible roles of membrane oranization in the activity of androgen biosynthetic enzymes associated with normal or tumorous mouse Leydig cell microsomes. Endocrinology 1978;103:805–816.

    Article  PubMed  CAS  Google Scholar 

  16. Hall PR Cellular organization for steroidogenesis. Int Rev Cytol 1984;86:53–95.

    Article  PubMed  CAS  Google Scholar 

  17. Miller WL. Molecular biology of steroid hormone synthesis. Endocrine Rev 1988;9:295–318.

    Article  CAS  Google Scholar 

  18. Shan LX, Phillips DM, Bardin CW, Hardy MP. Differential regulation of steroidogenic enzymes during differentiation optimizes testosterone production by adult rat Leydig cells. Endocrinology 1993;133:2277–2283.

    Article  PubMed  CAS  Google Scholar 

  19. Payne AH, O’Shaughnessy PJ. Structure, function and regulation of steroidogenic enzymes in the Leydig cell. In: Payne AH, Hardy MP, Russell LD, eds. The Leydig Cell: Cache River Press, Vienna, IL, 1996; 263–275.

    Google Scholar 

  20. Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocrine Rev 2004;25:947–970.

    Article  CAS  Google Scholar 

  21. Zirkin BR, Ewing LL, Kromann N, Cochran RC. Testosterone secretion by rat, rabbit, guinea pig, dog and hamster testes perfused in vitro: Correlation with Leydig cell ultrastructure. Endocrinology 1980;107:1867–1874.

    Article  PubMed  CAS  Google Scholar 

  22. Nussdorfer GG, Robba C, Mazzocchi G, Rebuffat P. Effects of human chorionic gonadotropins on the interstitial cells of the rat testis: A morphometric and radioimmunological study. Int J Androl 1980;3:319–332.

    Article  PubMed  CAS  Google Scholar 

  23. Fouquet J-P. Meusy-Dessolle N, Dang D-C. Morphometry of fetal leydig cells in the monkey (Macaca fasicularis), correlation with plasma testosterone. Biol Cell 1983;49:267–272.

    PubMed  CAS  Google Scholar 

  24. Fouquet J-P, Meusy-Dessolle N, Dang D-C. Relationships between Leydig cell morphometry and plasma testosterone during postnatal development of the monkey, Macaca fasicicularis. Reprod Nutr Dev 1984;24:281–296.

    Article  PubMed  CAS  Google Scholar 

  25. Farkash Y, Timberg R, Orly J. Preparation of antiserum to rat cytochrome P-450 cholesterol side chain cleavge, and its use for ultrastructural localization of the immunoreactive enzyme by protein A-gold technique. Endocrinology 1986;118:1353–1365.

    Article  PubMed  CAS  Google Scholar 

  26. Geuze HJ, Slot JW, Yanagibashi K, McCracken JA, Schwartz AL, Hall PF. Immunogold cytochemistry of cytochromes P-450 in porcine adrenal cortex: Two enzymes (side-chain cleavage and 11 β-hydroxylase) are co-localized in the same mitochondria. Histochemistry 1987;86:551–557.

    Article  PubMed  CAS  Google Scholar 

  27. Cherradi N, Defaye G, Chambaz EM. Characterization of the 3β-hydroxysteroid dehydrogenase activity associated with bovine adrenocortical mitochondria. Endocrinology 1994;134:1358–1364.

    Article  PubMed  CAS  Google Scholar 

  28. Ishimura I, Fujita H. Light and electron microscopic immunohistochemistry of the localization of adrenal steroidogenic enzymes. Microsc Res Tech 1997;36:445–453.

    Article  PubMed  CAS  Google Scholar 

  29. Pelletier G, Li S, Luu-The V, Tremblay Y, Belanger A, Labrie F. Immunoelectron microscopic localiztion of three key steroidogenic enzymes (cytochrome p450scc, 3β-hydroxysteroid dehydrogenase and cytochrome P450c17) in rat adrenal cortex and gonads. J Endocrinol 2001;171:373–383.

    Article  PubMed  CAS  Google Scholar 

  30. Coaker T, Downie T, More IAR. Complex giant mitochondria in the human endometrial glandular cell: Serial sectioning, high-voltage electron microscopic, and three-dimensional reconstruction studies. J Ultrastruc Res 1982;78:283–291.

    Article  CAS  Google Scholar 

  31. Bilinska B. Staining with ANS fluorescent dye reveals distribution of mitochondria and lipid droplets in cultured Leydig cells. Folia Histochem Cytobiol 1994;32:21–24.

    PubMed  CAS  Google Scholar 

  32. Bereiter-Hahn J, Voth M. Dynamics of mitochondria in living cells: Shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 1994;27:198–219.

    Article  PubMed  CAS  Google Scholar 

  33. Belt WE, Pease DC. Mitochondrial structure in sites of steroid secretion. J Biophys Biochem Cytol 1956;2(suppl l):369–374.

    PubMed  CAS  Google Scholar 

  34. Munn EA. The structure of mitochondria. Academic Press, London, 1974.

    Google Scholar 

  35. Fawcett DW. The Cell. W B Saunders, Philadelphia, 1981.

    Google Scholar 

  36. Mannella CA, Marko M, Penczek P, Barnard D, Frank J. The internal compartmentation of rat-liver mitochondria: tomographic study using the high-voltage transmission electron microscope. Micros Res Tech 1994;27:278–283.

    Article  CAS  Google Scholar 

  37. Mannella CA, Marko M, Buttl K. Reconsidering mitochondrial structure: new views of an old organelle. Trends Biochem Sci 1997;22:37–39.

    Article  PubMed  CAS  Google Scholar 

  38. Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, Frey T. Electron tomography of neuronal mitochondria: threedimensional structure and organization of cristae and membrane contacts. J Struct Biol 1997; 119:260–272.

    Article  PubMed  CAS  Google Scholar 

  39. Perkins GA, Frey TG. Recent structural insight into mitochondria gained by microscopy. Micron 2000;31:97–111.

    Article  PubMed  CAS  Google Scholar 

  40. Frey TG, Mannella CA. The internal structure of mitochondria. Trends Bioch Sci 2000;25:319–324.

    Article  CAS  Google Scholar 

  41. Nicastro D, Frangakis AS, Typke D, Baumeister W. Cryoelectron tomography of neurospora mitochondria. J Struct Biol 2000;129:48–56.

    Article  PubMed  CAS  Google Scholar 

  42. Andersson-Cedergren E. Ultrastructure of motor end plate and sarcoplasmic components of mouse skeletal muscle fiber as revealed by three-dimensional reconstructions from serial sections. J Ultrastruct Res (suppl 1): 1959.

    Google Scholar 

  43. Daems WT, Wisse E. Shape and attachment of the cristae mitochondriales in mouse hepatic cell mitochondria. J Ultrastruct Res 1966;16:123–140.

    Article  PubMed  CAS  Google Scholar 

  44. Gilkerson RW, Selker JML, Capaldi RA. The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett 2003;546:355–358.

    Article  PubMed  CAS  Google Scholar 

  45. Ko YH, Delannoy M, Hullihen J, Chiu W, Pedersen PL. Mitochondrial ATP synthasome. J Biol Chem 2003;278: 12,305–12,309.

    CAS  Google Scholar 

  46. Prince FP. Mitochondrial cristae diversity in human Leydig cells: A revised look at cristae morphology in these steroidproducing cells. Anat Rec 1999;254:534–541.

    Article  PubMed  CAS  Google Scholar 

  47. Prince FP. Lamellar and tubular associations of the mitochondrial cristae: unique forms of the cristae present in steroidproducing cells. Mitochondrion 2002;1:381–389.

    Article  PubMed  CAS  Google Scholar 

  48. Prince FP, Buttle KF. Mitochondrial structure in steroidproducing cells: Three-dimensional reconstruction of human Leydig cell mitochondria by electron microscopic tomography. Anat Rec 2004;278A:454–461.

    Article  Google Scholar 

  49. Black VH, Robbins E, McNamara N, Huima T. A correlated thin-section and freeze-fracture analysis of guinea pig adrenocortical cells. Am J Anat 1979;453–504.

    Google Scholar 

  50. Jefcoate CR, McNamara BC, Artemenko I, Yamazaki T. Regulation of cholesterol movement to mitochondrial cytochrome P450scc in steroid hormone synthesis. J Steroid Biochem Mol Biol 1992;43:751–767.

    Article  CAS  Google Scholar 

  51. Christenson LK, Strauss JF. Steroidogenic acute regulatory protein (StAR) and the intramitochondrial translocation of cholesterol. Biochim Biophys Acta 2000;1529: 175–187.

    PubMed  CAS  Google Scholar 

  52. Paavola LG, Strauss JF, Boyd CO, Nestler JE. Uptake of goldand [3H] cholesteryl linoleate-labeled human low density lipoprotein by cultured rat granulosa cells: Cellular mechanisms involved in liporotein metabolism and their importance to steroidogenesis. J Cell Biol 1985;100: 1235–1247.

    Article  PubMed  CAS  Google Scholar 

  53. Hermo L, Clermont Y, Lalli M. Intracellular pathways of endocytosed tracers in Leydig cells of the rat. J Androl 1985;6:213–224.

    PubMed  CAS  Google Scholar 

  54. Freman DA. Cyclic AMP mediated modification of cholesterol traffic in Leydig tumor cells. J Biol Chem 1987; 262:13,061–13,068.

    Google Scholar 

  55. Pelletier R-M, Vitale ML. Filipin vs enzymatic localization of cholesterol in guinea pig, mink, and mallard duck testicular cells. J Histochem Cytochem 1994;42:1539–1554.

    PubMed  CAS  Google Scholar 

  56. Farquahar MG. Multiple pathways of exocytosis, endocytosis, and membrane recycling: validation of a Golgi route. Federation Proc 1983;42:2407–2413.

    Google Scholar 

  57. Rambourg A, Clermont Y. Three-dimensional electron microscopy: structure of the Golgi apparatus. Eur J Cell Biol 1990;51:189–200.

    PubMed  CAS  Google Scholar 

  58. Marsh BJ, Volkmann N, Mclntosh JR, Howell KE. Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet β-cells. PNAS 2004;101:5565–5570.

    Article  PubMed  CAS  Google Scholar 

  59. Mogelsvang S, Marsh BJ, Ladinsky MS, Howell KE. Predicting function from structure: 3D structure studies of the mammalian Golgi complex. Traffic 2004;5:338–345.

    Article  PubMed  CAS  Google Scholar 

  60. Cheng B, Kowal J. Role of the Golgi complex in adrenocortical steroidogenesis. Microsc Res Tech 1997;36:503–509.

    Article  PubMed  CAS  Google Scholar 

  61. Freeman DA, Rommerts FFG. Regulation of Leydig cell cholesterol transport. In: Payne AH, Hardy MP, Russell LD, eds. The Leydig Cell, Cache River Press, Vienna, IL, 1996;231–240.

    Google Scholar 

  62. Mendis-Handagama SMLC. Peroxisomes and intracellular cholesterol trafficking in adult rat Lleydig cells following luteinizing hormone stimulation. Tissue & Cell 2000;32:102–106.

    Article  CAS  Google Scholar 

  63. Black VH, Bogart BI. Peroxisomes in inner adrenocortical cells of fetal and adult guinea pigs. J Cell Biol 1973;57:345–358.

    Article  PubMed  CAS  Google Scholar 

  64. Reddy J, Svoboda D. Microbodies (peroxisomes) in the interstitial cells of rodent testes. Lab Invest 1972;26:657–665.

    PubMed  CAS  Google Scholar 

  65. Novikoff AB, Novikoff PM, Davis C, Quintana N. Studies on microperoxisomes V Are microperoxisomes ubiquitous in mammalian cells? J Histochem Cytochem 1973;21:737–755.

    PubMed  CAS  Google Scholar 

  66. Magalhaes M, Magalhaes M. Peroxisomes in adrenal steroidogenesis. Micros Res Tech 1997;36:493–502.

    Article  CAS  Google Scholar 

  67. Gorgas K. Serial section analysis of mouse hepatic peroxisomes. Acta Embryol 1985;172:21–32.

    Article  CAS  Google Scholar 

  68. Ericsson J, Appelkvist EL, Runquist M, Dallner G. Biosynthesis of dolichol and cholesterol in rat liver peroxisomes. Biochimie 1993;75:167–173.

    Article  PubMed  CAS  Google Scholar 

  69. Litwin JA, Bilinska B. Morphological heterogeneity of peroxisomes in cultrued mouse Leydig cells. Folia Histochem Cytobiol 1995;33:255–258.

    PubMed  CAS  Google Scholar 

  70. Mendis-Handagama SMLC, Zirkin BR, Scallen, TJ, Ewing LL. Studies on peroxisomes of the adult rat Leydig cell. J Androl 1990;11:270–278.

    PubMed  CAS  Google Scholar 

  71. Ohata M. Electon microscopic study on the testicular interstitial cells in the mouse. Arch Histol Jap 1979;42:51–79.

    PubMed  CAS  Google Scholar 

  72. Papadopoulos V, Boujrad N, Ikonomovic MD, Ferrara P, Vidic B. Topography of the Leydig cell mitochondrial peripheraltype benzodiazepine receptor. Mol Cell Endocrinol 1994; 104:R5–R9.

    Article  PubMed  CAS  Google Scholar 

  73. Pfanner N, Rassow J, Wienhues U, Hergersberg C, Sollner T, Becker K, Neupert W. Contact sites between inner and outer membranes: Structure and role in protein translocation into the mitochondria. Biochim Biophys Acta 1990; 1018:239–242.

    Article  PubMed  CAS  Google Scholar 

  74. Vance JE, Shiao Y-J. Intracellular trafficking of phospholipids: Import of phosphatidylserine into mitochondria. Anticancer Res 1996;16:1333–1340.

    PubMed  CAS  Google Scholar 

  75. Alb JG, Kearns MA, Bankaitis VA. Phospholipid metabolism and membrane dynamics. Curr Opin Cell Biol 1996; 8:534–541.

    Article  PubMed  CAS  Google Scholar 

  76. Reinke F. Beitrage zur histologie des menschen. Arch Micr Anat 1896;47:34–44.

    Article  Google Scholar 

  77. Sohval AR, Gabrilove JL, Churg J. Ultrastructure of Leydig cell paracrystalline inclusions, possibly related to Reinke crystals, in the normal human testis. Z Zeilforsch 1973; 142:13–26.

    Article  CAS  Google Scholar 

  78. Chemes HE. Leydig cell development in humans. In: Payne AH, Hardy MP, Russell LD, eds. The Leydig Cell, Cache River Press, Vienna, IL, 1996; 175–201.

    Google Scholar 

  79. Mori H, Fukunishi R, Fujii M, Hataji K, Shiraishi T, Matsumoto K. Stereological analysis of Reinke’s crystals in human Leydig cells. Virchows Arch A 1978;380:1–9.

    CAS  Google Scholar 

  80. Prince FP, Fraser HM, Mann DR. A Reinke-like inclusion within Leydig cells of the marmoset monkey (Callithrix jacchus). J Anat 1999;195:311–313.

    Article  PubMed  Google Scholar 

  81. Schulze W, Davidoff MS, Holstein A-F. Are Leydig cells of neural origin? Substance P-like immunoreactivity in human testicular tissue. Acta Endocrinol 1987;115:373–377.

    PubMed  CAS  Google Scholar 

  82. Davidoff MS, Schulze W, Middendorff R, Holstein A-F. The Leydig cell of the human testis—a new member of the diffuse neuroendocrine system. Cell Tiss Res 1993;271:429–439.

    Article  CAS  Google Scholar 

  83. Mayerhofer A, Danilchik M, Pau K-Y, Lara HE, Russell LD, Ojeda SR. Testis of prepubertal rhesus monkeys receives a dual catecholaminergic input provided by the extrinsic innervation and an intragonadal source of catecholamines. Biol Reprod 1996;55:509–518.

    Article  PubMed  CAS  Google Scholar 

  84. Davidoff MS, Middendorff R, Kofuncu E, Muller D, Jezek D, Holstein A-F. Leydig cells of the human testis possess astrocyte and oligodendrocyte marker molecules. Acta Histochem 2002;104:39–49.

    Article  PubMed  CAS  Google Scholar 

  85. Geigerseder C, Doepner R, Thalhammer A, et al. Evidence for a GABAergic system in rodent and human testis: Local GABA production and GABA receptors. Neuroendocrinology 2003;77:314–323.

    Article  PubMed  CAS  Google Scholar 

  86. Davidoff MS, Ungefroren H, Middendorff R, et al. Catecholamine-synthesizing enzymes in the adult and prenatal human testis. Histochem Cell Biol 2005;124:313–323.

    Article  PubMed  CAS  Google Scholar 

  87. Prince FP. Ultrastructural evidence of mature Leydig cells and Leydig cell regression in the neonatal human testis. Anat Rec 1990;228:405–417.

    Google Scholar 

  88. Prince FP. Ultrastructural evidence of indirect and direct autonomic innervation of human Leydig cells: comparison of neonatal, childhood and pubertal ages. Cell Tiss Res 1992;269:383–390.

    Article  CAS  Google Scholar 

  89. Mayerhofer A. Leydig cell regulation by catecholamines andneuroendocrine messengers. In: Payne AH, Hardy MP, Russell LD, eds. The Leydig Cell: Cache River Press, Vienna, IL, 1996;407–418.

    Google Scholar 

  90. Prince FP. An ultrastructural and immunoperoxidase study of the neonatal human testis: evidence of mature, testosterone producing Leydig cells and Leydig cell regression. Anat Rec 1985;211:156A.

    Article  Google Scholar 

  91. Prince FP. The triphasic nature of Leydig cell development in humans, and comments on nomenclature. J Endocrinol 2001;168:213–216.

    Article  PubMed  CAS  Google Scholar 

  92. Pelliniemi LJ, Niemi M. Fine structure of the human foetal testis. Z Zellforsch 1969;99:507–522.

    Article  PubMed  CAS  Google Scholar 

  93. Holstein AF, Wartenberg H, Vossmeyer J. Zur cytologie der pranatalen gonadenentwicklung beim menschem. III. Die entwicklung der Leydigzellen im hoden von embryonen und feten. Z Anat Entwickl-Gesch 1971;135:43–66.

    Article  CAS  Google Scholar 

  94. Gondos B, Golbus MS. Ultrastructural changes in human fetal Leydig cells at mid-gestation. Andrologia 1976;8(suppl): 116–117.

    Google Scholar 

  95. Codesal J, Regadera J, Nistal M, Regadera-Sejas J, Paniagua R. Involution of human fetal Leydig cells. An immunohistochemical, ultrastructural and quantitative study. J Anat 1990;172:103–114.

    PubMed  CAS  Google Scholar 

  96. Murray TJ, Fowler PA, Abramovich DR, Haites N, Lea RG. Human fetal testis: Second trimester proliferative and steroidogenic capacities. J Clin Endocrinol Metabol 2000; 85:4812–4817.

    Article  CAS  Google Scholar 

  97. Haider SG, Berthold G, Darbandi R. Differentiation of Leydig cells and peritubular cells in fetal human testis from 17 to 23 postconceptional week. J Androl 2001; (suppl):197.

    Google Scholar 

  98. Waters BL, Trainer TD. Development of the human fetal testis. Ped Path Lab Med 1996;16:9–23.

    Article  CAS  Google Scholar 

  99. Huhtaniemi I. Endocrine function and regulation of the fetal and neonatal testis. Int J Dev Biol 1989;33:117–123.

    PubMed  CAS  Google Scholar 

  100. Mann DR, Fraser HM. The neonatal period: a critical interval in male primate development. J Endocrinol 1996;149:191–197.

    Article  PubMed  CAS  Google Scholar 

  101. Forest MG, Cathiard AM, Bertrand JA. Evidence of testicular activity in early infancy. J Clin Endocrinol Metabol 1973;37:148–151.

    Article  CAS  Google Scholar 

  102. Faiman C, Reyes FI, Winter JSD. Serum gonadotropin patterns during the perinatal period in man and in the chimpanzee. INSERM 1974;32:281–298.

    CAS  Google Scholar 

  103. Nistal M, Paniagua R, Regadera J, Santamaria L, Amat P. A quantitative morphological study of human Leydig cells from birth to adulthood. Cell Tiss Res 1986;246:229–236.

    Article  CAS  Google Scholar 

  104. Prince FP, Mann DR, Fraser HM. Blockade of the hypothalamic-pituitary-testicular axis with a GnRH antagonist in the neonatal marmoset monkey: changes in Leydig cell ultrastructure. Tiss Cell 1998;6:651–661.

    Article  Google Scholar 

  105. Prince FP. Ultrastructure of immature Leydig cells in the human prepubertal testis. Anat Rec 1984;209:165–176.

    Article  PubMed  CAS  Google Scholar 

  106. Hadziselimovic F, Girard J, Hocht B, von der Ohe M, Stalder G. Effect of LH-RH treatment on hypothalamo-pituitary-gonadal axis and Leydig cell ultrastructure in cryptorchid boys. Hormone Res 1980;13:358–366.

    Article  PubMed  CAS  Google Scholar 

  107. Rivarola MA, Belgorosky A, Berensztein E, de Davila MTG. Human prepubertal testicular cells in culture: Steroidogenic capacity, paracrine and hormone control. J Steroid Biochem Mol Biol 1995;53:119–125.

    Article  PubMed  CAS  Google Scholar 

  108. Berensztein E, Belgorosky A, de Davila MTG, Rivarola MA. Basal testosterone secretion and response to human luteinizing, follicle-stimulating, and growth hormones in culture of cells isolated from testes of infants and children. Ped Res 1995;38:592–597.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Prince, F.P. (2007). The Human Leydig Cell. In: Payne, A.H., Hardy, M.P. (eds) The Leydig Cell in Health and Disease. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59745-453-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-453-7_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-754-9

  • Online ISBN: 978-1-59745-453-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics