Skip to main content

Proteomics of Human Cerebrospinal Fluid

  • Chapter
  • 1240 Accesses

Abstract

Examination of human cerebrospinal fluid (CSF) has been performed for over 100 years. Since CSF is in direct contact with the extracellular surface of the brain, the biochemical composition of this fluid is altered in disorders related to the central nervous system. Hence, it is of great interest to investigate thoroughly the human CSF proteome, to identify proteins, and to examine possible biomarkers of, for example, neurodegenerative disorders. This chapter will provide a short introduction to proteins found in CSF and describe designs and applications of proteomics methods used for the analysis of CSF.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Green AJE. Cerebrospinal fluid brain-derived proteins in the diagnosis of Alzheimer’s disease and Creutzfeldt-Jakob disease. Neuropathol Appl Neurobiol 2002;28:427–440.

    Article  PubMed  CAS  Google Scholar 

  2. Betz AL, Goldstein GW, Katzman R. Blood-brain-cerebrospinal fluid barriers. In: Siegel GJ, ed. Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 5th ed. New York: Raven Press, 1994:681–699.

    Google Scholar 

  3. Thompson EJ. The CSF Proteins: A Biochemical Approach. Amsterdam: Elsevier, 1988.

    Google Scholar 

  4. Reiber H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clin Chim Acta 2001;310:173–186.

    Article  PubMed  CAS  Google Scholar 

  5. Marko-Varga G, Fehniger TE. Proteomics and disease—the challenge for technology and discovery. J Proteome Res 2004;3:167–178.

    Article  PubMed  CAS  Google Scholar 

  6. Wikkelsö C. Likvorundersökningar. In: Aquilonius S-M, Fagius J, eds. Neurologi. Stockholm: Almqvist & Wiksell Medicin, 1994:92–96.

    Google Scholar 

  7. Yuan X, Desiderio D. Proteomics analysis of human cerebrospinal fluid. J Chromatogr B 2005;815:179–189.

    Article  CAS  Google Scholar 

  8. Sickmann A, Dormeyer W, Wortelkamp S, Woitalla D, Kuhn W, Meyer HE. Towards a high resolution separation of human cerebrospinal fluid. J Chromatogr B 2002; 771:167–196.

    Article  CAS  Google Scholar 

  9. Hesse C, Nilsson CL, Blennow K, Davidsson P. Identification of the apolipoprotein E4 isoform in cerebrospinal fluid with preparative two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Electrophoresis 2001;22:1834–1837.

    Article  PubMed  CAS  Google Scholar 

  10. Sickmann A, Dormeyer W, Wortelkamp S, Woitalla D, Kuhn W, Meyer HE. Identification of proteins from human cerebrospinal fluid, separated by twodimensional polyacrylamide gel electrophoresis. Electrophoresis 2000;21: 2721–2728.

    Article  PubMed  CAS  Google Scholar 

  11. Yuan X, Russell T, Wood G, Desiderio D. Analysis of the human lumbar cerebrospinal fluid proteome. Electrophoresis 2002;23:1185–1196.

    Article  PubMed  CAS  Google Scholar 

  12. Raymacker J, Daniels A, De Brabandere V, Missiaen C. Identification of twodimentionally separated human cerebrospinal fluid proteins by N-terminal sequencing, matrix-assisted laser desorption/ionization-mass spectrometry, nanoliquid chromatography-electrospray ionization-time of flight mass spectrometry, and tandem mass spectrometry. Electrophoresis 2000;21:2266–2283.

    Article  Google Scholar 

  13. Davidsson P, Folkesson S, Christiansson M, et al. Identification of proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing as a prefractionation step followed by two-dimensional gel electrophoresis and matrixassisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom 2002; 16:2083–2088.

    Article  PubMed  CAS  Google Scholar 

  14. Folkesson Hansson S, Puchades M, Blennow K, Sjögren M, Davidsson P. Validation of a prefractionation method followed by two-dimensional electrophoresis—applied to cerebrospinal fluid proteins from frontotemporal dementia patients. Proteome Sci 2004;2:1–11.

    Article  Google Scholar 

  15. Yuan X, Desiderio DM. Proteomics analysis of prefractionated human lumbar cerebrospinal fluid. Proteomics 2005;5:541–550.

    Article  PubMed  CAS  Google Scholar 

  16. Travis J, Bowen J, Tewksbury D, Johnson D, Pannell R. Isolation of albumin from whole human plasma and fractionation of albumin-depleted plasma. Biochem J 1976;157:301–306.

    PubMed  CAS  Google Scholar 

  17. Wang YY, Cheng P, Chan DW. A simple affinity spin tube filter method for removing high-abundant common proteins or enriching low-abundant biomarkers for serum proteomic analysis. Proteomics 2003;3:243–248.

    Article  PubMed  CAS  Google Scholar 

  18. Greenough C, Jenkins RE, Kitteringham NR, Pirmohamed M, Park BK, Pennington SR. A method for the rapid depletion of albumin and immunoglobulin from human plasma. Proteomics 2004;4:3107–3111.

    Article  PubMed  CAS  Google Scholar 

  19. Steel LF, Trotter MG, Nakajima PB, Mattu TS, Gonye G, Block T. Efficient and specific removal of albumin from human serum samples. Mol Cell Protein 2003;2:262–270.

    CAS  Google Scholar 

  20. Rueggeberg S, Bathke A, Li X, Franz T. Removal of albumin and immunoglobulin fron human cerebrospinal fluid (CSF) prior to 2-D gel electrophoresis using the Aurum Serum Protein Mini Kit. Bio-Rad, Tech Note 2004;3061.

    Google Scholar 

  21. Bergquist J, Palmblad M, Wetterhall M, Håkansson P, Markides KE. Peptide mapping of proteins in human body fluids using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J Mass Spectrom Rev 2002;21:2–15.

    Article  CAS  Google Scholar 

  22. Ramström M, Palmblad M, Markides KE, Håkansson P, Bergquist J. Protein identification in cerebrospinal fluid using packed capillary liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Proteomics 2003;3:184–190.

    Article  PubMed  Google Scholar 

  23. Ramström M, Ivonin I, Johansson A, et al. Cerebrospinal fluid protein patterns in neurodegenerative disease revealed by liquid chromatography fourier transform ion cyclotron resonance mass spectrometry. Proteomics 2004;4: 4010–4018.

    Article  PubMed  CAS  Google Scholar 

  24. Ramström M, Hagman C, Mitchell JK, Derrick PD, Håkansson P, Bergquist J. Depletion of high-abundant proteins in body fluids prior to liquid chromatography fourier transform ion cyclotron resonance mass spectrometry. J Proteome Res 2005;4:410–416.

    Article  PubMed  CAS  Google Scholar 

  25. Wetterhall M, Palmblad M, Håkansson P, Markides KE, Bergquist J. Rapid analysis of tryptically digested cerebrospinal fluid using capillary electrophoresiselectrospray ionization-Fourier transform ion cyclotron resonance-mass spectrometry. J Proteome Res 2002;1:361–366.

    Article  PubMed  CAS  Google Scholar 

  26. Nilsson S, Wetterhall M, Bergquist J, Nyholm L, Markides KE. A simple and robust conductive graphite coating for sheathless electrospray emitters used in capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 2001; 15:1997–2000.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang J, Goodlett DR, Peskind ER, et al. Quantitative proteomic analysis of agerelated changes in human cerebrospinal fluid. Neurobiol Aging 2005;26:207–227.

    Article  PubMed  CAS  Google Scholar 

  28. Wenner BR, Lovell MA, Lynn BC. Proteomics analysis of human ventricular cerebrospinal fluid from neurologically normal, elderly subjects using twodimensional LC-MS/MS. J Proteome Res 2004;3:97–103.

    Article  PubMed  CAS  Google Scholar 

  29. Kay AD, Petzold A, Kerr M, Keir G, Thompson EJ, Nicoll JA. Cerebrospinal fluid apolipoprotein E concentration decreases after traumatic brain injury. J Neurotrauma 2003:243–250.

    Google Scholar 

  30. Terrisse L, Poirier J, Bertrand P, et al. Increased levels of apolipoprotein D in cerebrospinal fluid and hippocampus of Alzheimer’s patients. J Neurochem 1998;71:1643–1650.

    Article  PubMed  CAS  Google Scholar 

  31. Smyth MD, Cribbs DH, Tenner AJ, et al. Decreased levels of C1q in cerebrospinal fluid of living Alzheimer patients correlate with disease state. Neurobiol Aging 1994;15:609–614.

    Article  PubMed  CAS  Google Scholar 

  32. Tenhunen R, Iivanainen M, Kovanen J. Cerebrospinal fluid beta 2-microglobulin in neurological disorders. Acta Neurol Scand 1978;58:366–373.

    Article  PubMed  CAS  Google Scholar 

  33. Brisby H, Olmarker K, Rosengren L, Cederlund C-G. Markers of nerve tissue injury in the cerebrospinal fluid in patients with lumbar disc hernation and sciatica. Spine 1999;24:742–746.

    Article  PubMed  CAS  Google Scholar 

  34. Rosengren LE, Karlsson J-E, Karlsson J-O, Persson LI, Wikkelsö C. Patients with amytrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem 1996;67:2013–2018.

    Article  PubMed  CAS  Google Scholar 

  35. Blennow K, Hampel H. CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2003;2:605–613.

    Article  PubMed  CAS  Google Scholar 

  36. Choe LH, Dutt MJ, Relkin N, Lee KH. Studies of potential cerebrospinal fluid molecular markers for Alzheimer’s disease. Electrophoresis 2002;23:2247–2251.

    Article  PubMed  CAS  Google Scholar 

  37. Puchades M, Folkesson Hansson S, Nilsson C, et al. Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res Mol Brain Res 2003;118:140–146.

    Article  PubMed  CAS  Google Scholar 

  38. Davidsson P, Westman-Brinkmalm A, Nilsson CL, et al. Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport 2002:5.

    Google Scholar 

  39. Merched A, Serot JM, Visvikis S, Aguillon D, Faure G, Siest G. Apolipoprotein E, transthyretin and actin in the CSF of Alzheimer’s patients: relation with the senile plaques and cytoskeleton biochemistry. FEBS Lett 1998;425:225–228.

    Article  PubMed  CAS  Google Scholar 

  40. Davidsson P, Sjögren M, Andreasen N, et al. Studies of the pathophysiological mechanisms in frontotemporal dementia by proteome analysis of CSF proteins. Mol Brain Res 2002;109:128–133.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ramström, M., Bergquist, J. (2007). Proteomics of Human Cerebrospinal Fluid. In: Thongboonkerd, V. (eds) Proteomics of Human Body Fluids. Humana Press. https://doi.org/10.1007/978-1-59745-432-2_12

Download citation

Publish with us

Policies and ethics