Skip to main content

Mechanisms of Resistance to Drugs That Interfere with Microtubule Assembly

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Patient relapse during or following chemotherapy is a complex problem that potentially involves suboptimal drug dosing, changes in pharmacokinetics, sequestration of cancer cells, and genetic changes in the tumor cells themselves. This review focuses on possible mechanisms of drug resistance caused by mutations in cancer cells, and critically discusses evidence from cell culture models in support of each of these mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Gilman AG. The Pharmacological Basis of Therapeutics. 9th ed. McGraw-Hill, New York, 1996.

    Google Scholar 

  2. Mekhail TM, Markman M. Paclitaxel in cancer therapy. Expert Opin Pharmacother 2002; 3: 755–766.

    Article  PubMed  CAS  Google Scholar 

  3. Cabral F. Factors determining cellular mechanisms of resistance to antimitotic drugs. Drug Resistance Updates 2000; 3: 1–6.

    Article  Google Scholar 

  4. Casazza AM, Fairchild CR. Paclitaxel (Taxol): mechanisms of resistance. Cancer Treatment Res 1996; 87: 149–171.

    CAS  Google Scholar 

  5. Dumontet C, Sikic BI. Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol 1999; 17: 1061–1070.

    PubMed  CAS  Google Scholar 

  6. Orr GA, Verdier-Pinard P, McDavid H, Horwitz SB. Mechanisms of Taxol resistance related to microtubules. Oncogene 2003; 22: 7280–7295.

    Article  PubMed  CAS  Google Scholar 

  7. Gottesman MM. Molecular Cell Genetics, John Wiley, NY, 1985.

    Google Scholar 

  8. Siminovitch L. On the nature of hereditable variation in cultured somatic cells. Cell 1976; 7: 1–11.

    Article  PubMed  CAS  Google Scholar 

  9. Goldie JH, Coldman AJ. A mathematical model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treatment Rep 1979; 63: 1727–1733.

    CAS  Google Scholar 

  10. Luria SE, Delbruck M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 1943; 28: 491–511.

    PubMed  CAS  Google Scholar 

  11. Cabral F, Abraham I, Gottesman MM. Revertants of a Chinese hamster ovary cell mutant with an altered β-tubulin: evidence that the altered tubulin confers both colcemid resistance and temperature sensitivity on the cell. Mol Cell Biol 1982; 2: 720–729.

    PubMed  CAS  Google Scholar 

  12. Blade K, Menick DR, Cabral F. Overexpression of class I, II, or IVb β-tubulin isotypes in CHO cells is insufficient to confer resistance to paclitaxel. J Cell Sci 1999; 112: 2213–2221.

    PubMed  CAS  Google Scholar 

  13. Gonzalez-Garay ML, Chang L, Blade K, Menick DR, Cabral F. A β-tubulin leucine cluster involved in microtubule assembly and paclitaxel resistance. J Biol Chem 1999; 274: 23,875–23,882.

    Article  PubMed  CAS  Google Scholar 

  14. Hari M, Wang Y, Veeraraghavan S, Cabral F. Mutations in α-and β-tubulin that stabilize microtubules and confer resistance to colcemid and vinblastine. Mol Cancer Ther 2003; 2: 597–605.

    PubMed  CAS  Google Scholar 

  15. Wang Y, Veeraraghavan S, Cabral F. Intra-allelic suppression of a mutation that stabilizes microtubules and confers resistance to colcemid. Biochemistry 2004; 43: 8965–8973.

    Article  PubMed  CAS  Google Scholar 

  16. Ravelli RBG, Gigant B, Curmi PA, et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004; 428: 198–202.

    Article  PubMed  CAS  Google Scholar 

  17. Downing KH. Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Ann Rev Cell Dev Biol 2000; 16: 89–111.

    Article  CAS  Google Scholar 

  18. Rai SS, Wolff J. Localization of the vinblastine-binding site on β-tubulin. J Biol Chem 1996; 271: 14,707–14,711.

    Article  PubMed  CAS  Google Scholar 

  19. Gigant B, Wang C, Ravelli RBG, et al. Structural basis for the regulation of tubulin by vinblastine. Nature 2005; 435: 519–522.

    Article  PubMed  CAS  Google Scholar 

  20. Mitchison TJ, Kirschner MW. Some thoughts on the partitioning of tubulin between monomer and polymer under conditions of dynamic instability. Cell Biophys 1987; 11: 35–55.

    PubMed  CAS  Google Scholar 

  21. Wilson L. Action of drugs on microtubules. Life Sci 1975; 17: 303–310.

    Article  PubMed  CAS  Google Scholar 

  22. Manfredi JJ, Parness J, Horwitz SB. Taxol binds to cellular microtubules. J Cell Biol 1981; 94: 688–696.

    Article  Google Scholar 

  23. Jordan MA, Wilson L. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 1998; 10: 123–130.

    Article  PubMed  CAS  Google Scholar 

  24. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 1999; 39: 361–398.

    Article  PubMed  CAS  Google Scholar 

  25. Rowinsky EK, Donehower RC. Paclitaxel (Taxol). N Engl J Med 1995; 332: 1004–1014.

    Article  PubMed  CAS  Google Scholar 

  26. Verschraegen CF, Sittisomwong T, Kudelka AP, et al. Docetaxel for patients with paclitaxel-resistant Mullerian carcinoma. J Clin Oncol 2000; 18: 2733–2739.

    PubMed  CAS  Google Scholar 

  27. Schibler M, Cabral F. Taxol-dependent mutants of Chinese hamster ovary cells with alterations in α-and β-tubulin. J Cell Biol 1986; 102: 1522–1531.

    Article  PubMed  CAS  Google Scholar 

  28. Dumontet C, Duran GE, Steger KA, Beketic-Oreskovic L, Sikic BI. Resistance mechanisms in human sarcoma mutants derived by single-step exposure to paclitaxel (Taxol). Cancer Res 1996; 56: 1091–1097.

    PubMed  CAS  Google Scholar 

  29. Schibler MJ, Barlow SB, Cabral F. Elimination of permeability mutants from selections for drug resistance in mammalian cells. FASEB J 1989; 3: 163–168.

    PubMed  CAS  Google Scholar 

  30. Davidse LC, Flach W. Differential binding of methyl benzimidazole-2-yl carbamate to fungal tubulin as a mechanism of resistance to this antimitotic agent in mutant strains of Aspergillus nidulans. J Cell Biol 1977; 72: 174–193.

    Article  PubMed  CAS  Google Scholar 

  31. Ling V, Aubin JE, Chase A, Sarangi F. Mutants of Chinese hamster ovary (CHO) cells with altered colcemid-binding efficiency. Cell 1979; 18: 423–430.

    Article  PubMed  CAS  Google Scholar 

  32. Keates RAB, Sarangi F, Ling V. Structural and functional alterations in microtubule protein from Chinese hamster ovary mutants. Proc Natl Acad Sci USA 1981; 78: 5638–5642.

    Article  PubMed  CAS  Google Scholar 

  33. Cabral F, Sobel ME, Gottesman MM. CHO mutants resistant to colchicine, colcemid or griseofulvin have an altered β-tubulin. Cell 1980; 20: 29–36.

    Article  PubMed  CAS  Google Scholar 

  34. Cabral F, Barlow SB. Mechanisms by which mammalian cells acquire resistance to drugs that affect microtubule assembly. FASEB J 1989; 3: 1593–1599.

    PubMed  CAS  Google Scholar 

  35. Sullivan KF. Structure and utilization of tubulin isotypes. Ann Rev Cell Biol 1988; 4: 687–716.

    PubMed  CAS  Google Scholar 

  36. Giannakakou P, Sackett DL, Kang Y-K, et al. Paclitaxel-resistant human ovarian cancer cells have mutant β-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 1997; 272: 17,118–17,125.

    Article  PubMed  CAS  Google Scholar 

  37. Giannakakou P, Gussio R, Nogales E, et al. A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci USA 2000; 97: 2904–2909.

    Article  PubMed  CAS  Google Scholar 

  38. Hua XH, Genini D, Gussio R, et al. Biochemical genetic analysis of indanocine resistance in human leukemia. Cancer Res 2001; 61: 7248–7254.

    PubMed  CAS  Google Scholar 

  39. Wang Y, Yin S, Blade K, Cooper G, Menick DR, Cabral F. Mutations at Leucine 215 of β-tubulin affect paclitaxel sensitivity by two distinct mechanisms. Biochemistry 2006; 45: 185–194.

    Article  PubMed  CAS  Google Scholar 

  40. Barlow SB, Cabral F. Alterations in microtubule assembly caused by the microtubule-active drug LY195448. Cell Motil Cytoskeleton 1991; 19: 9–17.

    Article  PubMed  CAS  Google Scholar 

  41. Cabral F, Abraham I, Gottesman MM. Isolation of a taxol-resistant Chinese hamster ovary cell mutant that has an alteration in α-tubulin. Proc Natl Acad Sci USA 1981; 78: 4388–4391.

    Article  PubMed  CAS  Google Scholar 

  42. Schibler MJ, Cabral F. Maytansine-resistant mutants of Chinese hamster ovary cells with an alteration in α-tubulin. Cancer J Biochem Cell Biol 1985; 63: 503–510.

    CAS  Google Scholar 

  43. Cabral F. Isolation of Chinese hamster ovary cell mutants requiring the continuous presence of taxol for cell division. J Cell Biol 1983; 97: 22–29.

    Article  PubMed  CAS  Google Scholar 

  44. Cabral F, Brady RC, Schibler MJ. A mechanism of cellular resistance to drugs that interfere with microtubule assembly. Ann NY Acad Sci 1986; 466: 745–756.

    Article  PubMed  CAS  Google Scholar 

  45. Whitfield C, Abraham I, Ascherman D, Gottesman MM. Transfer and amplification of a mutant β-tubulin gene results in colcemid dependance: use of the transformant to demonstrate regulation of β-tubulin subunit levels by protein degradation. Mol Cell Biol 1986; 6: 1422–1429.

    PubMed  CAS  Google Scholar 

  46. Minotti AM, Barlow SB, Cabral F. Resistance to antimitotic drugs in Chinese hamster ovary cells correlates with changes in the level of polymerized tubulin. J Biol Chem 1991; 266: 3987–3994.

    PubMed  CAS  Google Scholar 

  47. Barlow SB, Gonzalez-Garay ML, Cabral F. Paclitaxel-dependent mutants have severely reduced microtubule assembly and reduced tubulin synthesis. J Cell Sci 2002; 115: 3469–3478.

    PubMed  CAS  Google Scholar 

  48. Ohta S, Nishio K, Kubota N, et al. Characterization of a taxol-resistant human small-cell lung cancer cell line. Jpn J Cancer Res 1994; 85: 290–297.

    PubMed  CAS  Google Scholar 

  49. Cabral F, Wible L, Brenner S, Brinkley BR. Taxol-requiring mutant of Chinese hamster ovary cells with impaired mitotic spindle assembly. J Cell Biol 1983; 97: 30–39.

    Article  PubMed  CAS  Google Scholar 

  50. Wang Y, Cabral R Paclitaxel resistance in cells with reduced β-tubulin. Biochim Biophys Acta 2005; 1744: 245–255.

    Article  PubMed  CAS  Google Scholar 

  51. Bhattacharya R, Cabral F. A ubiquitous β-tubulin disrupts microtubule assembly and inhibits cell proliferation. Mol Biol Cell 2004; 15: 3123–3131.

    Article  PubMed  CAS  Google Scholar 

  52. Lopata MA, Cleveland DW. In vivo microtubules are copolymers of available β-tubulin isotypes: localization of each of six vertebrate β-tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens. J Cell Biol 1987; 105: 1707–1720.

    Article  PubMed  CAS  Google Scholar 

  53. Fulton C, Simpson PA. In: Cell Motility Goldman R, Pollard T, Rosenbaum J, eds. NY: Cold Spring Harbor Press; 1976: 987–1006.

    Google Scholar 

  54. Joshi H C, Cleveland DW. Diversity among tubulin subunits: toward what functional end. Cell Motil Cytoskel 1990; 16: 159–163.

    Article  CAS  Google Scholar 

  55. Luduena RF. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 1998; 178: 207–275.

    Article  PubMed  CAS  Google Scholar 

  56. Burkhart CA, Kavallaris M, Horwitz SB. The role of P-tubulin isotypes in resistance to antimitotic drugs. Biochim Biophys Acta 2001; 1471: Ol–O9.

    Google Scholar 

  57. Haber M, Burkhart CA, Regl DL, Madafiglio J, Norris MD, Horwitz SB. Altered expression of M beta 2, the class II beta-tubulin isotype, in a murine J774.2 cell line with a high level of taxol resistance. J Biol Chem 1995; 270: 31,269–31,275.

    Article  PubMed  CAS  Google Scholar 

  58. Kavallaris M, Kuo DYS, Burkhart CA, et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 1997; 100: 1282–1293.

    Article  PubMed  CAS  Google Scholar 

  59. Jaffrezou JP, Dumontet C, Derry WB, et al. Novel mechanism of resistance to paclitaxel (Taxol) in human K562 leukemia cells by combined selection with PSC 833. Oncol Res 1995; 7: 517–527.

    PubMed  CAS  Google Scholar 

  60. Ranganathan S, Dexter DW, Benetatos CA, Chapman AE, Tew KD, Hudes GR. Increase of βIII-and βIVa-tubulin in human prostate carcinoma cells as a result of estramustine resistance. Cancer Res 1996; 56: 2584–2589.

    PubMed  CAS  Google Scholar 

  61. Laing N, Dahllof B, Hartley-Asp B, Ranganathan S, Tew KD. Interaction of estramustine with tubulin isotypes. Biochemistry 1997; 36: 871–878.

    Article  PubMed  CAS  Google Scholar 

  62. Hari M, Yang H, Zeng C, Canizales M, Cabral R Expression of class III βP-tubulin reduces microtubule assembly and confers resistance to paclitaxel. Cell Motil Cytoskeleton 2003; 56: 45–56.

    Article  PubMed  CAS  Google Scholar 

  63. Katsetos CD, Herman MM, Mork SJ. Class III beta-tubulin in human development and cancer. Cell Motil Cytoskeleton 2003; 55: 77–96.

    Article  PubMed  CAS  Google Scholar 

  64. Olmsted JB. Non-motor microtubule-associated proteins. Curr Opin Cell Biol 1991; 3: 52–58.

    Article  PubMed  CAS  Google Scholar 

  65. Cassimeris L, Spittle C. Regulation of microtubule-associated proteins. Int Rev Cytol 2001; 210: 163–226.

    Article  PubMed  CAS  Google Scholar 

  66. Gundersen GG, Cook TA. Microtubules and signal transduction. Curr Opin Cell Biol 1999; 11: 81–94.

    Article  PubMed  CAS  Google Scholar 

  67. Drubin DG, Kirschner MW. Tau protein function in living cells. J Cell Biol 1986; 103: 2739–2746.

    Article  PubMed  CAS  Google Scholar 

  68. Barlow SB, Gonzalez-Garay ML, West RR, Olmsted JB, Cabral F. Stable expression of heterologous microtubule associated proteins in Chinese hamster ovary cells: evidence for differing roles of MAPs in microtubule organization. J Cell Biol 1994; 126: 1017–1029.

    Article  PubMed  CAS  Google Scholar 

  69. Pereira A, Doshen J, Tanaka E, Goldstein LS. Genetic analysis of a Drosophila microtubule-associated protein. J Cell Biol 1992; 116: 377–383.

    Article  PubMed  CAS  Google Scholar 

  70. Wang XM, Peloquin JG, Zhai Y, Bulinski JC, Borisy GG. Removal of MAP4 from microtubules in vivo produces no discernible phenotype at the cellular level. J Cell Biol 1996; 132: 349–358.

    Article  Google Scholar 

  71. Nguyen H-L, Charl S, Gruber D, Lue C-M, Chapin SJ, Bulinski JC. Overexpression of full-or partiallength MAP4 stabilizes microtubules and alters cell growth. J Cell Sci 1997; 110: 281–294.

    PubMed  CAS  Google Scholar 

  72. Zhang CC, Yang J-M, Bash-Babula J, et al. DNA damage increases sensitivity to vinca alkaloids and decreases sensitivity to taxanes through p53-dependent repression of microtubule-associated protein 4. Cancer Res 1999; 59: 3663–3670.

    PubMed  CAS  Google Scholar 

  73. Cassimeris L. The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 2002; 14: 18–24.

    Article  PubMed  CAS  Google Scholar 

  74. Walczak CE. Microtubule dynamics and tubulin interacting proteins. Curr Opin Cell Biol 2000; 12: 52–56.

    Article  PubMed  CAS  Google Scholar 

  75. Quarmby L. Cellular Samurai: katanin and the severing of microtubules. J Cell Sci 2000; 113: 2821–2827.

    PubMed  CAS  Google Scholar 

  76. Iancu C, Mistry SJ, Arkin S, Wallenstein S, Atweh GF. Effects of stathmin inhibition on the mitotic spindle. J Cell Sci 2001; 114: 909–916.

    PubMed  CAS  Google Scholar 

  77. Alli E, Bash-Babula J, Yang J-M, Hait WN. Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer. Cancer Res 2002; 62: 6864–6869.

    PubMed  CAS  Google Scholar 

  78. Nishio K, Nakamura T, Koh Y, Kanzawa F, Tamura T, Saijo N. Oncoprotein 18 overexpression increases the sensitivity to vindesine in human lung carcinoma cells. Cancer 2001; 91: 1494–1499.

    Article  PubMed  CAS  Google Scholar 

  79. Martello LA, Verdier-Pinard P, Shen H-J, et al. Elevated levels of microtubule destabilizing factors in a taxol-resistant/dependent A549 cell line with an α-tubulin mutation. Cancer Res 2003; 63: 1207–1213.

    PubMed  CAS  Google Scholar 

  80. Monzo M, Rosell R, Felip E, et al. Paclitaxel resistance in non-small-cell lung cancer associated sith beta-tubulin gene mutations. J Clin Oncol 1999; 17: 1786–1793.

    PubMed  CAS  Google Scholar 

  81. Kelley MJ, Li S, Harpole DH. Genetic analysis of the β-tubulin gene, TUBB, in non-small-cell lung cancer. J Nat Cancer Inst 2001; 93: 1886–1888.

    Article  PubMed  CAS  Google Scholar 

  82. Achiwa H, Sato S, Shimizu S, et al. Analysis of beta-tubulin gene alteration in human lung cancer cell lines. Cancer Lett 2003; 201: 211–216.

    Article  PubMed  CAS  Google Scholar 

  83. Maeno K, Ito K, Hama Y, et al. Mutation of the class I beta-tubulin gene does not predict response to paclitaxel for breast cancer. Cancer Lett 2003; 198: 89–97.

    Article  PubMed  CAS  Google Scholar 

  84. Urano N, Fujiwara I, Hasegawa S, et al. Absence of beta-tubulin gene mutation in gastric carcinoma. Gastric Cancer 2003; 6: 108–112.

    PubMed  CAS  Google Scholar 

  85. de Castro J, Belda-Iniesta C, Cejas P, et al. New insights in beta-tubulin sequence analysis in nonsmall cell lung cancer. Lung Cancer 2003; 41: 41–48.

    Article  PubMed  Google Scholar 

  86. Hasegawa S, Miyoshi Y, Egawa C, et al. Mutational analysis of the Class I beta-tubulin gene in human breast cancer. Int J Cancer 2002; 101: 46–51.

    Article  PubMed  CAS  Google Scholar 

  87. Tsurutani J, Komiya T, Uejima H, et al. Mutational analysis of the beta-tubulin gene in lung cancer. Lung Cancer 2002; 35: 11–16.

    Article  PubMed  Google Scholar 

  88. Lamendola DE, Duan Z, Penson RT, Oliva E, Seiden MV. Beta tubulin mutations are rare in human ovarian carcinoma. Anticancer Res 2003; 23: 681–686.

    PubMed  CAS  Google Scholar 

  89. Sale S, Sung R, Shen P, et al. Conservation of the class I beta-tubulin gene in human populations and lack of mutations in lung cancers and paclitaxel-resistant ovarian cancers. Mol Cancer Ther 2002; 1: 215–225.

    PubMed  CAS  Google Scholar 

  90. Nogales E, Wolf SG, Downing KH. Structure of the αβ tubulin dimer by electron crystallography. Nature 1998; 391: 199–203.

    Article  PubMed  CAS  Google Scholar 

  91. Nogales E, Whittaker M, Milligan RA, Downing KH. High-resolution model of the microtubule. Cell 1999; 96: 79–88.

    Article  PubMed  CAS  Google Scholar 

  92. Goncalves A, Braguer D, Kamath K, et al. Resistance to Taxol in lung cancer cells associated with increased microtubule dynamics. Proc Natl Acad Sci USA 2001; 98: 11,737–11,742.

    Article  PubMed  CAS  Google Scholar 

  93. Boggs B, Cabral F. Mutations affecting assembly and stability of tubulin: evidence for a non-essential β-tubulin in CHO cells. Mol Cell Biol 1987; 7: 2700–2707.

    PubMed  CAS  Google Scholar 

  94. Lowe J, Li H, Downing KH, Nogales E. Refined structure of αβ-tubulin at 3.5 A resolution. J Mol Biol 2001; 313: 1045–1057.

    Article  PubMed  CAS  Google Scholar 

  95. Loganzo F, Hari M, Annable T, et al. Cells resistant to HTI-286 do not overexpress P-glycoprotein but have reduced drug accumulation and a point mutation in alpha-tubulin. Mol Cancer Ther 2004; 3: 1319–1327.

    PubMed  CAS  Google Scholar 

  96. Poruchynsky MS, Kim JH, Nogales E, et al. Tumor cells resistant to a microtubule-depolymerizing hemiasterlin analogue, HTI-286, have mutations in alpha-or beta-tubulin and increased microtubule stability. Biochemistry 2004; 43: 13,944–13,954.

    Article  PubMed  CAS  Google Scholar 

  97. He L, Yang CH, Horwitz SB. Mutations in β-tubulin map to domains involved in regulation of microtubule stability in epothilone-resistant cell lines. Mol Cancer Ther 2001; 1: 3–10.

    PubMed  CAS  Google Scholar 

  98. Verrills NM, Flemming CL, Liu M, et al. Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interactions. Chem Biol 2003; 10: 597–607.

    Article  PubMed  CAS  Google Scholar 

  99. Kavallaris M, Tait AS, Walsh BJ, et al. Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells. Cancer Res 2001; 61: 5803–5809.

    PubMed  CAS  Google Scholar 

  100. Wang Y, Tian G, Cowan NJ, Cabral F. Mutations affecting β-tubulin folding and degradation. J Biol Chem 2006; 281: 13,628–13,635.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Cabral, F. (2008). Mechanisms of Resistance to Drugs That Interfere with Microtubule Assembly. In: Fojo, T. (eds) The Role of Microtubules in Cell Biology, Neurobiology, and Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-336-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-336-3_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-294-0

  • Online ISBN: 978-1-59745-336-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics