Skip to main content

The Rationale for and Effects of Targeting TGF-β for Glioma Therapy

  • Chapter
Transforming Growth Factor-β in Cancer Therapy, Volume II

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1554 Accesses

Abstract

The failure of current therapies to control brain tumor growth and invasion accounts for the poor survival of glioma patients. For example, a patient diagnosed with glioblastoma (WHO grade IV) will probably live for less than 1 yr past the initial diagnosis. To combat this deadly cancer, novel therapies are being designed to target specific signal transduction pathways, including TGF-β, implicated in glioma development and progression. This chapter defines the effects of TGF-β on glioma proliferation, migration, invasion, angiogenesis, and immunosuppression, to explore the molecular mechanisms through which targeting TGF-β signaling could be beneficial for patient therapy. Recent promising results from preclinical and clinical trials of therapies developed towards TGF-β ligand or receptor will also be summarized to demonstrate the potential benefit of targeting TGF-β signaling for glioma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis FG, McCarthy BJ, Freels S, Kupelian V, Bondy ML. The conditional probability of survival of patients with primary malignant brain tumors. Surveillance, epidemiology, and end results (SEER) data. Cancer 1999;85:485–491.

    Article  CAS  PubMed  Google Scholar 

  2. Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG. Patterns of failure following treatment for glioblstoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 1989;16:1405–1409.

    CAS  PubMed  Google Scholar 

  3. Bodmer S, Strommer K, Frei K, et al. Immunosuppression and transforming growth factor-beta in glioblastoma. J Immun 1989;143:3222–3229.

    CAS  PubMed  Google Scholar 

  4. Yamada N, Kato M, Yamashita N, et al. Enhanced expression of transforming growth factor-beta and its type-I and type-II receptors in human glioblastoma. Int J Cancer 1995;62:386–392.

    Article  CAS  PubMed  Google Scholar 

  5. Stiles JD, Ostrow PT, Balos LL, et al. Correlation of endothelin-1 and transforming growth factor betal with malignancy and vascularity in human gliomas. J Neuropathol Exp Neurol 1997;56:435–439.

    Article  CAS  PubMed  Google Scholar 

  6. Kjellman C, Olofsson SP, Hansson O, et al. Expression of TGF-beta isoforms, TGF-beta receptors, and Smad molecules at different stages of human glioma. Int J Cancer (Pred Oncol) 2000;89: 251–258.

    Article  CAS  Google Scholar 

  7. Strege RJ, Godt C, Stark AM, Hugo H-H, Mehdorn HM. Protein expression of Fas, Fas ligand, Bcl-2 and TGFbeta2 and correlation with survival in initial and recurrent human gliomas. J Neuro-Oncology 2004;67:29–39.

    Article  Google Scholar 

  8. Hjelmeland MD, Hjelmeland AB, Sathornsumetee S, et al. SB-431542, a small molecule transforming growth factor-beta-receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther 2004;3:737–745.

    CAS  PubMed  Google Scholar 

  9. Pan J-J, Chang W-J, Barone TA, Plunkett RJ, Ostrow PT, Greenberg SJ. Increased expression of TGF-betal1 reduces tumor growth of human U-87 glioblastoma cells in vivo. Cancer Immunol Immunother 2006;55:918–927.

    Article  CAS  PubMed  Google Scholar 

  10. Uhl M, Aulwurm S, Wischhusen J, et al. SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of muring and human glioma cells in vitro and in vivo. Cancer Res 2004;64:7954–7961.

    Article  CAS  PubMed  Google Scholar 

  11. Constam DB, Philipp J, Manipiero UV, ten Dijke P, Schachner, Fontana A. Differential expression of transforming growth factor beta1, beta2, and beta3 by glioblastoma cells, astrocytes, and microglia. J Immunology 1992;148:1404–1410.

    CAS  Google Scholar 

  12. Leitlein J, Aulwurm S, Waltereit R, et al. Processing of immunosuppressive pro-TGF-beta1,2 by human glioblastoma cells involves cytoplasmic and secreted furing-like proteases. J Immunology 2001; 166:7238–7243.

    CAS  Google Scholar 

  13. Piek E, Westermak U, Kastemar M, et al. Expression of transforming-growth-factor (TGF)-beta receptors and Smad proteins in glioblastoma cell lines with distinct responses to TGF-beta1. Int J Cancer 1999;80:756–763.

    Article  CAS  PubMed  Google Scholar 

  14. Rich JN, Ming Z, Datto MB, Bigner DD, Wang XF. Transforming growth factor-beta mediated p15INK4B induction and growth inhibition in astrocytes is SMAD3-dependent and a pathway prominently altered in human glioma cell lines. J Biol Chem 1999;274:35,053–35,058.

    Article  CAS  PubMed  Google Scholar 

  15. Lindholm D, Castren E, Kiefer R, Zafra F, Thoenen H. Transforming growth factor-beta1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol 1992; 117:395–400.

    Article  CAS  PubMed  Google Scholar 

  16. Seoane J, Le H-V, Shen L, Anderson SA, Massagué J. Integration of Smad and Forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004;117: 211–223.

    Article  CAS  PubMed  Google Scholar 

  17. Held-Feindt J, Lutjohann B, Ungenfroren H, Mehdorn HM, Mentlein R. Interaction of transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) in human glioma cells. J Neuro-Oncology 2003;63:117–127.

    Article  Google Scholar 

  18. Platten M, Wick W, Wild-Bode C, Aulwurm S, Dichgans J, Weller M. Transforming growth factors beta1 (TGF-beta1) and TGF-beta2 promote glioma cell migration via up-regulation of αvβ3 integrin expression. Biochem Biophys Res Commun 2000;268:607–611.

    Article  CAS  PubMed  Google Scholar 

  19. Brockmann M-A, Ulbricht U, Gruner K, Fillbrandt R, Westphal M, Lamszus K. Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factors. Neurosurgery 2003;52:1391–1399.

    Article  PubMed  Google Scholar 

  20. Wick W, Grimmel C, Wild-Bode C, Platten M, Arpin M, Weller M. Ezrin-dependent promotion of glioma cell clonogenicity, motility, and invasion mediated by BCL-2 and transforming growth factorbeta2. J Neurosci 2001;21:3360–3368.

    CAS  PubMed  Google Scholar 

  21. Wick W, Platten M, Weller M. Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neuro-Oncology 2001;53:177–185.

    Article  CAS  Google Scholar 

  22. Uhm JH, Gladson CL, Rao JS. The role of integrins in the malignant phenotype of gliomas. Front Biosci 1999;4:D188–D199.

    Article  CAS  PubMed  Google Scholar 

  23. Hjortland GO, Bjornland K, Pettersen S, et al. Modulation of glioma cell invasion invasion and motility by adenoviral gene transfer of PAI-1. Clin Exp Metastasis 2003;20:301–309.

    Article  CAS  PubMed  Google Scholar 

  24. Muracciole X, Romain S, Dufour H, et al. PAI-1 and EGFR expression in adult glioma tumors: toward a molecular prognostic classification. Int J Radiat Oncol Biol Phys 2002;52:592–598.

    Article  CAS  PubMed  Google Scholar 

  25. Rooprai HK, Rucklidge GJ, Panou C, Pilkington GJ. The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br J Cancer 2000;82:52–55.

    Article  CAS  PubMed  Google Scholar 

  26. Hjelmeland AB, Hjelmeland MD, Shi Q, et al. Loss of phosphatase and tensin homologue increases transforming growth factor beta-mediated invasion with enhanced SMAD3 transcriptional activity. Cancer Res 2005;65:11,276–11,281.

    Article  CAS  PubMed  Google Scholar 

  27. Haas-Kogan D, Shalev N, Wong M, et al. Protein kinas B(PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr Biol 1998;8:1195–1198.

    Article  CAS  PubMed  Google Scholar 

  28. Koochekpour S, Merzak A, Pilkington GJ. Vascular endothelial growth factor production is stimulated by gangliosides and TGF-beta isoforms in human glioma cells in vitro. Cancer Lett 1996;102:209–215.

    Article  CAS  PubMed  Google Scholar 

  29. Liau LM, Prins RM, Kiertscher SM, et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 2005;11:5515–5525.

    Article  CAS  PubMed  Google Scholar 

  30. Friese MA, Wischhusen J, Wick W, et al. RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 2004;64:7596–7603.

    Article  CAS  PubMed  Google Scholar 

  31. Friese MA, Platten M, Lutz SZ, et al. MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res 2003;63:8996–9006.

    CAS  PubMed  Google Scholar 

  32. Kakhrai H, Dorigo O, Shawler DL, et al. Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci USA 1996;93:2909–2914.

    Article  Google Scholar 

  33. Schlingensiepen K-H, Schlingensiepen R, Steinbrecher A, et al. Targeted tumor therapy with the TGF-beta2 antisense compound AP 12009. Cytokine Growth Factor Rev 2006;17:129–139.

    Article  CAS  PubMed  Google Scholar 

  34. Ishibashi H, Nakagawa K, Onimaru M, et al. Sp1 decoy transfected to carcinoma cells suppresses the expression of vascular endothelial growth factor, transforming growth factor beta1, and tissue factor and also cell growth and invasion activities. Cancer Res 2000;60:6531–6536.

    CAS  PubMed  Google Scholar 

  35. Patten M, Wild-Bode C, Wick W, Leitlein J, Dichgans J, Weller M. N-[3,4-Dimethoxycinnamoyl]-anthranilic acid (Tranilast) inhibits transforming growth factor-beta release and reduces migration and invasiveness of human malignant glioma cells. Int J Cancer 2001;93:53–61.

    Article  Google Scholar 

  36. Stander M, Naumann U, Dumitrescu L, et al. Gene Therapy 1998;5:1187–1194.

    Article  CAS  PubMed  Google Scholar 

  37. Witham TF, Villa L, Yang T, et al. Expression of a soluble transforming growth factor-beta (TGFbeta) receptor reduces tumorigenicity by regulating natural killer (NK) cell activity against 9L gliosarcoma in vivo. J Neuro-Oncology 2003;64:63–69.

    Google Scholar 

  38. Biglari A, Bataille D, Naumann U, et al. Effects of ectopic decorin in modulating intracranial glioma progression in vivo, in a rat syngeneic model. Cancer Gene Therapy 2004;11:721–732.

    Article  CAS  PubMed  Google Scholar 

  39. Inman GJ, Nicolas FJ, Callahan JF, et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2002;62:65–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hjelmeland, A.B., Rich, J.N. (2008). The Rationale for and Effects of Targeting TGF-β for Glioma Therapy. In: Jakowlew, S.B. (eds) Transforming Growth Factor-β in Cancer Therapy, Volume II. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-293-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-293-9_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-715-0

  • Online ISBN: 978-1-59745-293-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics