Skip to main content

Large-Scale Production of Recombinant Adeno-Associated Viral Vectors

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 433))

summary

Current and future demands of viral vectors for the development of successful pre-clinical and clinical studies in human gene therapy and possible commercialization of gene therapy products require well-established large-scale production processes. One of the most promising vectors for human gene therapy is recombinant adeno-associated virus vectors (rAAVs). Some of the attractive features of rAAV are broad tissue tropism, low immunogenicity, ability to transduce both mitotic and post-mitotic cells, and long-term gene expression in non-dividing cells. Recently, we developed a novel technology for the production of these vectors exploiting baculovirus expression vectors (BEV) in insect cell cultures. Initially developed in small, shake flask format, this process has been successfully scaled to larger volumes. In an effort to standardize rAAV production in stirred tank bioreactors, we characterized the culture conditions to derive a set of parameters correlated with high rAAV yields. Measuring capacitance and dielectric spectroscopy with a permittivity probe enabled us to determine optimal times of infection and harvest. Consistent yields of rAAV, 2 × 10\(^{13}\) DNase-resistant vector genomes (vg) [1 × 10\(^{12}\) transducing units (tu)] per liter of cell culture were obtained in bioreactors with working volumes ranging from 10 to 40 l. This represents significant progress toward establishing a robust large-scale process at industry level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herzog, R. W. (2004) AAV-mediated gene transfer to skeletal muscle. Methods Mol. Biol. 246, 179–194.

    CAS  PubMed  Google Scholar 

  2. Kessler, P. D., Dubielzig, R., Grimm, D., and Kleinschmidt, J. A. (1996) Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc. Natl. Acad. Sci. U. S. A. 93, 14082–14087.

    Article  CAS  PubMed  Google Scholar 

  3. H., Huang, Y., Takagwa, J., Barcena, A., Rakawa-Hoyt, J., Grossman, W., and Kan, Y. W. (2006) AAV serotype-1 mediates early onset of gene expression in mouse hearts and results in better therapeutic effect. Gene Ther. [Advanced online publication].

    Google Scholar 

  4. Muller, O. J., Leuchs, B., Pleger, S. T., Grimm, D., Franz, W. M., Katus, H. A., and Kleinschmidt, J. A. (2006) Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardivasc. Res. 1, 70–78.

    Article  Google Scholar 

  5. Snyder, R. O., Miao, C. H., Patijn, G. A., Spratt, S. K., Danos, O., Nagy, D., Gown, A. M., Winther, B. B., Meuse, L., Cohen, L. K., Thompson, A. R., and Kay, M. A. (1997) Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat. Genet. 16, 270–276.

    Article  CAS  PubMed  Google Scholar 

  6. Manno, C. S., Arruda, V. R., Pierce, G. F., Glader, B., Ragni, M., Rasko, J., Ozelo, M. C., Hoots, K., Blatt, P., Konkle, B., Dake, M., Kaye, R., Razavi, M., Zajko, A., Zehnder, J., Nakai, H., Chew, A., Leonard, D., Wright, J. F., Lessard, R. R., Sommer, J. M., Tigges, M., Sabatino, D., Luk, A., Jiang, H., Mingozzi, F., Couto, L., Ertl, H. C., High, K. A., and Kay, M. A. (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347.

    Article  CAS  PubMed  Google Scholar 

  7. Kaplitt, M. G., Leone, P., Samulski, R. J., Xiao, X., Pfaff, D. W., O’Malley, K. L., and During, M. J. (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain . Nat. Genet. 8, 148–154.

    Article  CAS  PubMed  Google Scholar 

  8. Xia, H., Mao, Q., Eliason, S. L., Harper, S. Q., Martins, I. H., Orr, H. T., Paulson, H. L., Yang, L., Kotin, R. M., and Davidson, B. L. (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med. 10, 816–820.

    Article  CAS  PubMed  Google Scholar 

  9. Flannery, J. G., Zolotukhin, S., Vaquero, M. I., LaVail, M. M., Muzyczka, N., and Hauswirth, W. W. (1997) Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc. Natl. Acad. Sci. U. S. A. 94, 6916–6921.

    Article  CAS  PubMed  Google Scholar 

  10. Auricchio, A., and Rolling, F. (2005) Adeno-associated viral vectors for retinal gene transfer and treatment of retinal diseases. -Curr. Gene Ther. 5, 339–348.

    Article  CAS  PubMed  Google Scholar 

  11. Halbert, C. L., Allen, J. M., and Miller, A. D. (2002) Efficient mouse airway transduction following recombination between AAV vectors carrying parts of a larger gene. Nat. Biotechnol. 20, 697–701.

    Article  CAS  PubMed  Google Scholar 

  12. Handa, A., Muramatsu, S., Qiu, J., Mizukami, H., and Brown, K. E. (2000) Adeno-associated virus (AAV)-3-based vectors transduce haematopoietic cells not susceptible to transduction with AAV-2-based vectors. J. Gen. Virol. 81, 2077–2084.

    CAS  PubMed  Google Scholar 

  13. Carter, B. J. (2005) Adeno-associated virus vectors in clinical trials. Hum. Gene Ther. 16, 541–550.

    Article  CAS  PubMed  Google Scholar 

  14. Fukuchi, K. I., Tahara, K., Kim. H., D., Maxwell, J. A., Lewis, T. L., Ccavitti-Loper, M. A., Kim, H., Ponnazhagan, S., and Lalonde, R. (2006) Anti-Abeta single chain antibody delivery via adeno-associated virus for treatment of Alzheimer’s disease. Neurobiol Dis. [Advanced online publication].

    Google Scholar 

  15. Lucas, A., Kremer, E. J., Hemmi, S., Luis, J., Vignon, F., and Lazennec, G. (2003) Comparative transductions of breast cancer cells by three DNA viruses. Biochem. Biophys. Res. Commun. 4, 1011–1016.

    Article  Google Scholar 

  16. De, B. P., Heguy, A., Hackett, N. R., Ferris, B., Leopold, P. R., Lee, J., Pierre, L., Gao, G., Wilson, J. M., and Crystal, R. G. (2006) High levels of persistent expression of alpha 1-antitrypsin mediated by the nonhuman primate serotype rh.10 adeno-associated virus despite preexisting immunity to common human adeno-associated viruses. Mol. Ther. 1, 67–76.

    Article  Google Scholar 

  17. Grieger, J. C. and Samulski, R. J. (2005) Adeno-associated virus as a gene therapy vector: development, production and clinical applications. Adv. Biochem. Eng. Biotechnol. 99, 119–145.

    CAS  PubMed  Google Scholar 

  18. Athanasopoulos, T. Graham, I. R., Foster, H., and Dickson, G. (2004) Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Ther. 1S, 109–121.

    Article  Google Scholar 

  19. Urabe, M., Ding, C., and Kotin, R. M. (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum. Gene Ther. 13, 1935–1943.

    Article  CAS  PubMed  Google Scholar 

  20. Power, J., Greenfield, P. F., Nielsen, L., and Reid, S. (1992) Modelling the growth and protein production by insect cells following infection by a recombinant baculovirus in suspension culture. Cytotechnology 9, 149–155.

    Article  CAS  PubMed  Google Scholar 

  21. B’edard, C., Jolicoeur, M., Jardin, B., Tom, R., Perret, S., and Kamen, A. (1994) Insect cell density in bioreactor cultures can be estimated from on-line measurements of optical density. Biotechnol Tech. 8, 605–610.

    Google Scholar 

  22. Akhnoukh, R., Gerlinde K., and Schugerl, K. (1996) On-line monitoring and control of the cultivation of Spodoptera frugiperda Sf9 insect cells and [beta]-galactosidase production by Autographa californica virus vector. Enzyme Microb. Tech. 18, 220–228.

    Article  CAS  Google Scholar 

  23. Kamen, A. A., B’edard, C., Tom, R., Perret, S., and Jardin, B. (1996) On-line monitoring of respiration in recombinant-baculovirus-infected and uninfected insect cell bioreactor cultures. Biotechnol. Bioeng. 50, 36–48.

    Article  CAS  PubMed  Google Scholar 

  24. Palomares, L. A., and Ramirez, O. T. (1996) The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture. Cytotechnology 22, 225–237.

    Article  CAS  Google Scholar 

  25. Zeiser, A., Elias, C. B., Voyer, R., Jardin, B., and Kamen, A. A. (2000) On-line monitoring of physiological parameters of insect cell cultures during the growth and infection process Biotechnol. Prog. 16, 803–808.

    Article  CAS  PubMed  Google Scholar 

  26. Zeiser, A., Bedard, C., Voyer, R., Jardin, B., Tom, R., and Kamen, A. A. (1999) On-line monitoring of the progress of infection in Sf-9 insect cell cultures using relative permittivity measurements. Biotechnol. Bioeng. 63, 122–126.

    Article  CAS  PubMed  Google Scholar 

  27. Licari, P., and Bailey, J. E. (1992) Modeling the population dynamics of baculovirus-infected insect cells: Optimizing infection strategies for enhanced recombinant protein yields. Biotechnol. Bioeng. 39, 432–441.

    Article  CAS  PubMed  Google Scholar 

  28. A., Esteban, G., and Kotin, R. M. (2007) Dielectric Spectroscopy monitoring for optimum harvest time determination during large-scale production of recombinant adeno-associated vectors. Appl. microbial. Biotechnol. In press. doi: 10.1007/s00253-007-1030-9.

    Google Scholar 

Download references

Acknowledgments

The authors thank Joseph Shiloach and Loc Trinh for providing the facilities for 40 l production and Geoffrey Esteban for the spectroscopy analysis.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Negrete, A., Kotin, R.M. (2008). Large-Scale Production of Recombinant Adeno-Associated Viral Vectors. In: Gene Therapy Protocols. Methods in Molecular Biology™, vol 433. Humana Press. https://doi.org/10.1007/978-1-59745-237-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-237-3_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-903-1

  • Online ISBN: 978-1-59745-237-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics