Skip to main content

Biallelic Gene Knockouts in Chinese Hamster Ovary Cells

  • Protocol
Chromosomal Mutagenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 435))

Abstract

Chinese hamster ovary (CHO) cells are the most common host cells and are widely used in the manufacture of approved recombinant therapeutics. They represent a major new class of universal hosts in biopharmaceutical production. However, there remains room for improvement to create more ideal host cells that can add greater value to therapeutic recombinant proteins at reduced production cost. A promising approach to this goal is biallelic gene knockout in CHO cells, as it is the most reliable and effective means to permanent phenotypic change, owing to the complete removal of gene function. In this chapter, we describe a biallelic gene knockout process in CHO cells, as exemplified by the successful targeted disruption of both FUT8 alleles encoding α-1,6-fucosyltransferase gene in CHO/DG44 cells. Wild-type alleles are sequentially disrupted by homologous recombination using two targeting vectors to generate homozygous disruptants, and the drug-resistance gene cassettes remaining on the alleles are removed by a Cre/loxP recombination system so as not to leave the extraphenotype except for the functional loss of the gene of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chu, L. and Robinson, D. K. (2001) Industrial choices for protein production by large-scale cell culture. Curr. Opin. Biotechnol. 12, 180–187.

    Article  CAS  PubMed  Google Scholar 

  2. Wurn, F. M. (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22, 1393–1398.

    Article  Google Scholar 

  3. Yamane-Ohnuki, N., Kinoshita, S., Inoue-Urakubo, M., et al. (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol. Bioeng. 87, 614–622.

    Article  CAS  PubMed  Google Scholar 

  4. Shinkawa, T., Nakamura, K., Yamane, N., et al. (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 278, 3466–3473.

    Article  CAS  PubMed  Google Scholar 

  5. Sedivy, J. M. and Sharp, P. A. (1989) Positive genetic selection for gene disruption in mammalian cells by homologous recombination. Proc. Natl. Acad. Sci. USA 86, 227–231.

    Article  CAS  PubMed  Google Scholar 

  6. Arbones, M. L., Austin, H. A., Capon, D. J., and Greenburg, G. (1994) Gene targeting in normal somatic cells: inactivation of the interferon-γ receptor in myoblasts. Nat. Genet. 6, 90–97.

    Article  CAS  PubMed  Google Scholar 

  7. Hanson, K. D. and Sedivy, J. M. (1995) Analysis of biological selections for high-efficiency gene targeting. Mol. Cell. Biol. 15, 45–51.

    CAS  PubMed  Google Scholar 

  8. Adair, G. M., Nairn, R. S., Wilson, J. H., et al. (1989) Targeted homologous recombination at the endogenous adenine phosphoribosyltransferase locus in Chinese hamster cells. Proc. Natl. Acad. Sci. USA 86, 4574–4578.

    Article  CAS  PubMed  Google Scholar 

  9. Pennington, S. L. and Wilson, J. H. (1991) Gene targeting in Chinese hamster ovary cell is conservative. Proc. Natl. Acad. Sci. USA 88, 9498–9502.

    Article  CAS  PubMed  Google Scholar 

  10. Nairn, R. S., Adair, G. M., Porter, T., et al. (1993) Targeting vector configuration and method of gene transfer influence targeted correction of the APRT gene in Chinese hamster ovary cells. Somat. Cell Mol. Genet. 19, 363–375.

    Article  CAS  PubMed  Google Scholar 

  11. Aratani, Y., Okazaki, R., and Koyama, H. (1992) End extension repair of introduced targeting vectors mediated by homologous recombination in mammalian cells. Nucleic Acids Res. 20, 4795–4801.

    Article  CAS  PubMed  Google Scholar 

  12. Scheerer, J. B. and Adair, G. M. (1994) Homology dependence of targeted recombination at the Chinese hamster APRT locus. Mol. Cell. Biol. 14, 6663–6673.

    CAS  PubMed  Google Scholar 

  13. Prouty, S. M., Hanson, K. D., Boyle, A. L., et al. (1993) A cell culture model system for genetic analysis of the cell cycle by targeted homologous recombination. Oncogene 8, 899–907.

    CAS  PubMed  Google Scholar 

  14. Warner, T. G. (1999) Enhancing therapeutic glycoprotein production in Chinese hamster ovary cells by metabolic engineering endogenous gene control with antisense DNA and gene targeting. Glycobiology 9, 841–850.

    Article  CAS  PubMed  Google Scholar 

  15. Siciliano, M. J., Stallings, R. L., and Adair, G. M. (1985) The genetic map of the Chinese hamster and the genetic consequences of chromosomal rearrangements in CHO cells, in Molecular Cell Genetics, (Gottesman M. M, ed.), Wiley, New York, pp. 95–135.

    Google Scholar 

  16. Mamaeva, S. E. (1998) Karyotypic evolution of cells in culture: a new concept. Int. Rev. Cytol. 178, 1–40.

    Article  CAS  PubMed  Google Scholar 

  17. Deaven, L. L. and Petersen, D. F. (1973) The Chromosomes of CHO, an aneuploid Chinese hamster ovary cell line: G-band, C-band, and autoradiographic analyses. Chromosoma 41, 129–144.

    Article  CAS  PubMed  Google Scholar 

  18. Riele, H., Maandag, E. R., and Beans, A. (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constracts. Proc. Natl. Acad. Sci. USA 89, 5128–5132.

    Article  Google Scholar 

  19. Sedivy, J. M. and Dutriaux, A. (1999) Gene targeting and somatic cell genetics: a rebirth or a coming age? Trend Genet. 15, 88–90.

    Article  CAS  Google Scholar 

  20. Deng, C. and Capecchi, M. R. (1992) Reexamination of gene targeting frequency as a function of extent of homology between the targeting vector and target locus. Mol. Cell. Biol. 12, 3365–3371.

    CAS  PubMed  Google Scholar 

  21. Hanson, K. D. and Sedivy, J. M. (1995) Analysis of biological selection for high-efficiency gene targeting. Mol. Cell. Biol. 15, 45–51.

    CAS  PubMed  Google Scholar 

  22. Kohno, K. and Uchida, T. (1987) Highly frequent single amino acid substitution in mammalian elongation factor 2 (EF-2) results in expression of resistance to EF-2-ADP-ribosylating toxins. J. Biol. Chem. 262, 12,298–12,305.

    CAS  PubMed  Google Scholar 

  23. Derouazi, M., Martinet, D., Besuchet Schmutz, N., et al. (2006) Genetic characterization of CHO production host DG44 and derivative recombinant cell lines. Biochem. Biophys. Res. Commun. 340, 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  24. Davies, J. and Reff, M. (2001) Chromosome localization and gene-copy-number quantification of three random integrations in Chinese-hamster ovary cells and their amplified cell lines using fluorescence in situ hybridization. Biotechnol. Appl. Biochem. 33, 99–105.

    Article  CAS  PubMed  Google Scholar 

  25. Siminovitch, L. (1985) Mechanisms of genetic variation in Chinese hamster ovary cells, in Molecular Cell Genetics, (Gottesman, M. M., ed.), Wiley, NY, pp. 869–879.

    Google Scholar 

  26. Kido, M., Miwatani, H., Kohno, K., Uchida, T., and Okada, Y. (1991) Targeted introduction of a diphtheria toxin-resistant point mutation into the chromosomal EF-2 locus by in vivo homologous recombination. Cell Struct. Func. 16, 447–453.

    Article  CAS  Google Scholar 

  27. Ramirez-Solis, R., Rivera-Perez, J., Wallace, J. D., Wims, M., Zheng, H., and Bradley, A. (1992) Genomic DNA microextraction: a method to screen numerous samples. Anal. Biochem. 201, 331–335.

    Article  CAS  PubMed  Google Scholar 

  28. Urlaub, G., Mitchell, P. J., Kas, E., et al. (1986) Effect of gamma rays at the dihydroforate reductase locus: deletions and inversions. Somat. Cell Mol. Genet. 12, 555–566.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Yamane-Ohnuki, N., Yamano, K., Satoh, M. (2008). Biallelic Gene Knockouts in Chinese Hamster Ovary Cells. In: Davis, G.D., Kayser, K.J. (eds) Chromosomal Mutagenesis. Methods in Molecular Biology, vol 435. Humana Press. https://doi.org/10.1007/978-1-59745-232-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-232-8_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-899-7

  • Online ISBN: 978-1-59745-232-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics