Skip to main content

Nanobiotechnology Overview

  • Chapter
  • 2376 Accesses

Abstract

Nanobiotechnology is a multidisciplinary field that covers a vast and diverse array of technologies coming from engineering, physics, chemistry, and biology. It is the combination of these fields that has led to the birth of a new generation of materials and methods of making them. The scope of applications is enormous and every day we discover new areas of our daily lives where they can find use. This chapter aims to provide the reader with a brief overview of nanobiotechnology by describing different aspects and approaches in research and application of this exciting field. It also provides a short list of recently published review articles and books on the different topics in nanobiotechnology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hess H, Vogel V. Molecular shuttles based on motor proteins: active transport in synthetic environments. J Biotechnol 2001; 82:67–85.

    CAS  Google Scholar 

  2. Hess H, Bachand G, Vogel V. Powering nanodevices with biomolecular motors. Chemistry 2004; 10:2110–2116.

    Article  CAS  Google Scholar 

  3. Hess H, Clemmens J, Brunner C, Doot R, Luna S, Ernst KH, Vogel V. Molecular self-assembly of “nanowires” and “nanospools” using active transport. Nano Lett 2005; 5:629–633.

    Article  CAS  Google Scholar 

  4. Montemagno C. Constructing nanomechanical devices powered by biomolecular motors. J Nanotechnol 1999; 10:225–231.

    Article  CAS  Google Scholar 

  5. Liu H, Schmidt JJ, Bachand GD, et al. Control of a biomolecular motor-powered nanodevice with an engineered chemical switch. Nat Mater 2002; 1:173–177.

    Article  CAS  Google Scholar 

  6. Xi J, Schmidt JJ, Montemagno CD. Self-assembled microdevices driven by muscle. Nat Mater 2005; 4:180–184.

    Article  CAS  Google Scholar 

  7. Seeman NC. From genes to machines: DNA nanomechanical devices. Trends Biochem Sci 2005; 30:119–125.

    Article  CAS  Google Scholar 

  8. Seeman NC. Structural DNA nanotechnology: an overview. Methods Mol Biol 2005; 303:143–166.

    CAS  Google Scholar 

  9. Seeman NC. DNA enables nanoscale control of the structure of matter. Q Rev Biophys 2006; 6:1–9.

    Google Scholar 

  10. Seeman NC. At the crossroads of chemistry, biology, and materials: structural DNA nanotechnology. Chem Biol 2003; 10:1151–1159.

    Article  CAS  Google Scholar 

  11. Seeman NC. DNA in a material world. Nature 2003; 421:427–431.

    Article  CAS  Google Scholar 

  12. Sara M, Pum D, Schuster B, Sleytr UB. S-layers as patterning elements for application in nanobiotechnology. J Nanosci Nanotechnol 2005; 5:1939–1953.

    Article  CAS  Google Scholar 

  13. Schuster B, Gyorvary E, Pum D, Sleytr UB. Nanotechnology with S-layer proteins. Methods Mol Biol 2005; 300:101–123.

    CAS  Google Scholar 

  14. Shenton W, Pum D, Sleytr UB, Mann S. Synthesis of cadmium sulfide superlattices using self-assembled bacterial S-layers. Nature 1997; 389: 585–587.

    Article  CAS  Google Scholar 

  15. Gyorvary E, Schroedter A, Talapin DV, Weller H, Pum D, Sleytr UB. Formation of nanoparticle arrays on S-layer protein lattices. J Nanosci Nanotechnol 2004; 4:115–120.

    Article  CAS  Google Scholar 

  16. Niemeyer CM, Mirkin CA. Nanobiotechnology: Concepts, Applications and Perspectives. Weinheim: Wiley-VCH, 2004.

    Google Scholar 

  17. Rosenthal SJ, Wright DW. NanoBiotechnology Protocols. Methods in Molecular Biology, vol. 303. New Jersey: Humana Press, 2005.

    Google Scholar 

  18. Jain KK. Nanobiotechnology in Molecular Diagnosis: Current Techniques and Applications. Oxford: Taylor & Francis, 2005.

    Google Scholar 

  19. Nill KR. Glossary of Biotechnology and Nanobiotechnology Terms, 4th ed. London: CRC Press, 2005.

    Google Scholar 

  20. Nalwa HS. Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology. Valencia, CA: American Scientific Publishers, 2005.

    Google Scholar 

  21. Golden J. Nanobiotechnology. Oxford: Taylor & Francis, 2007.

    Google Scholar 

  22. Balzani VV, Credi A, Raymo FM, Stoddart JF. Artificial molecular machines. Angew Chem Int Ed Engl 2000; 39:3348–3391.

    Article  CAS  Google Scholar 

  23. Pennadam SS, Firman K, Alexander C, Gorecki DC. Protein-polymer nanomachines. Towards synthetic control of biological processes. J Nanobiotechnol 2004; 2:8.

    Article  CAS  Google Scholar 

  24. Astier Y, Bayley H, Howorka S. Protein components for nanodevices. Curr Opin Chem Biol 2005; 9:576–584.

    CAS  Google Scholar 

  25. Paul N, Joyce GF. Minimal self-replicating systems. Curr Opin Chem Biol 2004; 8:634–639.

    Article  CAS  Google Scholar 

  26. Zhang S, Marini DM, Hwang W, Santoso S. Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol 2002; 6:865–871.

    Article  Google Scholar 

  27. Ghosh I, Chmielewski J. Peptide self-assembly as a model of proteins in the pre-genomic world. Curr Opin Chem Biol 2004; 8:640–644.

    Article  CAS  Google Scholar 

  28. Koltover I. Biomolecular self-assembly: stacks of viruses. Nat Mater 2004; 3:584–586.

    Article  CAS  Google Scholar 

  29. Boncheva M, Gracias DH, Jacobs HO, Whitesides GM. Biomimetic selfassembly of a functional asymmetrical electronic device. Proc Natl Acad Sci USA 2002; 99:4937–4940.

    Article  CAS  Google Scholar 

  30. Whitesides GM, Boncheva M. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 2002; 99:4769–4774.

    Article  CAS  Google Scholar 

  31. Ghadiri MR, Tirrell DA. Chemistry at the crossroads. Curr Opin Chem Biol 2000; 4:661–662.

    Article  CAS  Google Scholar 

  32. Woolfson DN. The design of coiled-coil structures and assemblies. Adv Protein Chem 2005; 70:79–112.

    Article  CAS  Google Scholar 

  33. Wettig SD, Li CZ, Long YT, Kraatz HB, Lee JS. M-DNA: a self-assembling molecular wire for nanoelectronics and biosensing. Anal Sci 2003; 19:23–26.

    Article  CAS  Google Scholar 

  34. Yeates TO, Padilla JE. Designing supramolecular protein assemblies. Curr Opin Struct Biol 2002; 12:464–470.

    Article  CAS  Google Scholar 

  35. Wu LQ, Payne GF. Biofabrication: using biological materials and biocatalysts to construct nanostructured assemblies. Trends Biotechnol 2004; 22:593–599.

    Article  CAS  Google Scholar 

  36. Hamada D, Yanagihara I, Tsumoto K. Engineering amyloidogenicity towards the development of nanofibrillar materials. Trends Biotechnol 2004; 22:93–97.

    Article  CAS  Google Scholar 

  37. Emerich DF. Nanomedicine-prospective therapeutic and diagnostic applications. Expert Opin Biol Ther 2005; 5:1–5.

    Article  CAS  Google Scholar 

  38. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 2005; 23:47–55.

    Article  CAS  Google Scholar 

  39. Fortina P, Kricka LJ, Surrey S, Grodzinski P. Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol 2005; 23:168–173.

    Article  CAS  Google Scholar 

  40. Jain KK. Role of nanobiotechnology in developing personalized medicine for cancer. Technol Cancer Res Treat 2005; 4:645–650.

    CAS  Google Scholar 

  41. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005; 5:161–171.

    Article  CAS  Google Scholar 

  42. Labhasetwar V. Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. Curr Opin Biotechnol 2005; 16:674–680.

    Article  CAS  Google Scholar 

  43. Cheng MM, Cuda G, Bunimovich YL, et al. Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 2006; 10:11–19.

    Article  CAS  Google Scholar 

  44. Jain KK. The role of nanobiotechnology in drug discovery. Drug Discov Today 2005; 10:1435–1442.

    Article  CAS  Google Scholar 

  45. Jain KK. Nanotechnology-based drug delivery for cancer. Technol Cancer Res Treat 2005; 4:407–416.

    CAS  Google Scholar 

  46. Kubik T, Bogunia-Kubik K, Sugisaka M. Nanotechnology on duty in medical applications. Curr Pharm Biotechnol 2005; 6:17–33.

    CAS  Google Scholar 

  47. Bogunia-Kubik K, Sugisaka M. From molecular biology to nanotechnology and nanomedicine. Biosystems 2002; 65:123–138.

    Article  CAS  Google Scholar 

  48. Silva GA. Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci 2006; 7:65–74.

    Article  CAS  Google Scholar 

  49. Silva GA. Introduction to nanotechnology and its applications to medicine. Surg Neurol 2004; 61:216–220.

    Article  Google Scholar 

  50. Kubik T, Bogunia-Kubik K, Sugisaka M. Nanotechnology on duty in medical applications. Curr Pharm Biotechnol 2005; 6:17–33.

    CAS  Google Scholar 

  51. Bao G, Suresh S. Cell and molecular mechanics of biological materials. Nat Mater 2003; 2:715–725.

    Article  CAS  Google Scholar 

  52. Haustein E, Schwille P. Single-molecule spectroscopic methods. Curr Opin Struct Biol 2004; 14:531–540.

    Article  CAS  Google Scholar 

  53. Curtis A, Wilkinson C. Nantotechniques and approaches in biotechnology. Trends Biotechnol 2001; 19:97–101.

    Article  CAS  Google Scholar 

  54. Ishii Y, Ishijima A, Yanagida T. Single molecule nanomanipulation of biomolecules. Trends Biotechnol 2001; 19:211–216.

    Article  CAS  Google Scholar 

  55. Mao C, Solis DJ, Reiss BD, et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 2004; 303:213–217.

    Article  CAS  Google Scholar 

  56. Ball P. Synthetic biology for nanotechnology. Nanotechnology 2005;16:R1–R8.

    Article  CAS  Google Scholar 

  57. Sarikaya M, Tamerler C, Jen AK, Schulten K, Baneyx F. Molecular biomimetics: nanotechnology through biology. Nat Mater 2003; 2:577–585.

    Article  CAS  Google Scholar 

  58. Chen Y, Pepin A. Nanofabrication: conventional and nonconventional methods. Electrophoresis 2001; 22:187–207.

    Article  CAS  Google Scholar 

  59. Sarikaya M. Biomimetics: materials fabrication through biology. Proc Natl Acad Sci USA 1999; 96:14,183–14,185.

    Article  CAS  Google Scholar 

  60. Wilt FH. Developmental biology meets materials science: morphogenesis of biomineralized structures. Dev Biol 2005; 280:15–25.

    Article  CAS  Google Scholar 

  61. Penczek S, Pretula J, Kaluzynski K. Poly(alkylene phosphates): from synthetic models of biomacromolecules and biomembranes toward polymer-inorganic hybrids (mimicking biomineralization). Biomacromolecules 2005; 6:547–551.

    Article  CAS  Google Scholar 

  62. Vrieling EG, Sun Q, Beelen TP, et al. Controlled silica synthesis inspired by diatom silicon biomineralization. J Nanosci Nanotechnol 2005; 5:68–78.

    Article  CAS  Google Scholar 

  63. Bauerlein E. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nanoand microstructures. Angew Chem Int Ed Engl 2003; 42:614–641.

    Article  CAS  Google Scholar 

  64. Mastrobattista E, van der Aa MA, Hennink WE, Crommelin DJ. Artificial viruses: a nanotechnological approach to gene delivery. Nat Rev Drug Discov 2006; 5:115–121.

    Article  Google Scholar 

  65. Vriezema DM, Comellas Aragones M, Elemans JA, Cornelissen JJ, Rowan AE, Nolte RJ. Self-assembled nanoreactors. Chem Rev 2005; 105:1445–1489.

    Article  CAS  Google Scholar 

  66. Arora PS, Kirshenbaum K. Nano-tailoring; stitching alterations on viral coats. Chem Biol 2004; 11:418–420.

    Article  CAS  Google Scholar 

  67. Adar R, Benenson Y, Linshiz G, Rosner A, Tishby N, Shapiro E. Stochastic computing with biomolecular automata. Proc Natl Acad Sci USA 2004; 101:9960–9965.

    Article  CAS  Google Scholar 

  68. Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E. An autonomous molecular computer for logical control of gene expression. Nature 2004; 429:423–429.

    Article  CAS  Google Scholar 

  69. Benenson Y, Paz-Elizur T, Adar R, Keinan E, Livneh Z, Shapiro E. Programmable and autonomous computing machine made of biomolecules. Nature 2001; 414:430–434.

    Article  CAS  Google Scholar 

  70. Hill RT, Lyon JL, Allen R, Stevenson KJ, Shear JB. Microfabrication of three-dimensional bioelectronic architectures. J Am Chem Soc 2005; 127: 10,707–10,711.

    Article  CAS  Google Scholar 

  71. Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature 2006; 440:297–302.

    Article  CAS  Google Scholar 

  72. Rinaldi R, Maruccio G, Biasco A, Visconti P, Arima V, Cingolani R. A proteinbased three terminal electronic device. Ann NY Acad Sci 2003; 1006:187–197.

    Article  CAS  Google Scholar 

  73. Wettig SD, Li CZ, Long YT, Kraatz HB, Lee JS. M-DNA: a self-assembling molecular wire for nanoelectronics and biosensing. Anal Sci 2003; 19:23–26.

    Article  CAS  Google Scholar 

  74. Davis JJ. Molecular bioelectronics. Philos Transact A Math Phys Eng Sci 2003; 361:2807–2825.

    Article  CAS  Google Scholar 

  75. Willner I, Katz E. Magnetic control of electrocatalytic and bioelectrocatalytic processesc. Angew Chem Int Ed Engl 2003; 42:4576–4588.

    Article  CAS  Google Scholar 

  76. Willner I, Willner B. Biomaterials integrated with electronic elements: en route to bioelectronics. Trends Biotechnol 2001; 19:222–230.

    Article  CAS  Google Scholar 

  77. Seeman NC. Structural DNA nanotechnology: an overview. Meth Mol Biol 2005; 303:143–166.

    CAS  Google Scholar 

  78. Seeman NC. From genes to machines: DNA nanomechanical devices. Trends Biochem Sci 2005; 30:119–125.

    Article  CAS  Google Scholar 

  79. Seeman NC. At the crossroads of chemistry, biology, and materials: structural DNA nanotechnology. Chem Biol 2003; 10:1151–1159.

    Article  CAS  Google Scholar 

  80. Seeman NC. DNA in a material world. Nature 2003; 421:427–431.

    Article  CAS  Google Scholar 

  81. Seeman NC, Belcher AM. Emulating biology: building nanostructures from the bottom up. Proc Natl Acad Sci USA 2002; 99:6451–6455.

    Article  CAS  Google Scholar 

  82. Feldkamp U, Niemeyer CM. Rational design of DNA nanoarchitectures. Angew Chem Int Ed Engl 2006; 45:1856–1876.

    Article  CAS  Google Scholar 

  83. Niemeyer CM. Functional hybrid devices of proteins and inorganic nanoparticles. Angew Chem Int Ed Engl 2003; 42:5796–5800.

    Article  CAS  Google Scholar 

  84. Niemeyer CM, Adler M. Nanomechanical devices based on DNA. Angew Chem Int Ed Engl 2002; 41:3779–3783.

    Article  CAS  Google Scholar 

  85. Niemeyer CM. The developments of semisynthetic DNA-protein conjugates. Trends Biotechnol 2002; 20:395–401.

    Article  CAS  Google Scholar 

  86. Wngel J. Nucleic acid nanotechnology-towards Angstrom-scale engineering. Org Biomol Chem 2004; 2:277–280.

    Article  CAS  Google Scholar 

  87. Brucale M, Zuccheri G, Samori B. Mastering the complexity of DNA nanostructures. Trends Biotechnol 2006; 24:235–243.

    Article  CAS  Google Scholar 

  88. Paull R, Wolfe J, Hebert P, Sinkula M. Investing in nanotechnology. Nat Biotechnol 2003; 21:1144–1147.

    Article  CAS  Google Scholar 

  89. Jackel F, Watson MD, Mullen K, Rabe JP. Prototypical single-molecule chemical-field-effect transistor with nanometer-sized gates. Phys Rev Lett 2004; 92:188,303.

    Article  CAS  Google Scholar 

  90. Piva PG, DiLabio GA, Pitters JL, et al. Field regulation of single-molecule conductivity by a charged surface atom. Nature 2005; 435:658–661.

    Article  CAS  Google Scholar 

  91. D’Amico S, Maruccio G, Visconti P, D’Amone E, Bramanti A, Cingolani R, Rinaldi R. Ambipolar transistors based on azurin proteins. IEE Proc Nanobiotechnol 2004; 151:173–175.

    Article  CAS  Google Scholar 

  92. Brenning HT, Kubatkin SE, Erts D, Kafanov SG, Bauch T, Delsing P. A single electron transistor on an atomic force microscope probe. Nano Lett 2006; 6:937–941.

    Article  CAS  Google Scholar 

  93. Parker J. Computing with DNA. EMBO Rep 2003;4:7–10.

    Article  CAS  Google Scholar 

  94. Soreni M, Yogev S, Kossoy E, Shoham Y, Keinan E. Parallel biomolecular computation on surfaces with advanced finite automata. J Am Chem Soc 2005; 127:3935–3943.

    Article  CAS  Google Scholar 

  95. Benenson Y, Adar R, Paz-Elizur T, Livneh Z, Shapiro E. DNA molecule provides a computing machine with both data and fuel. Proc Natl Acad Sci USA. 2003; 100:2191–2196.

    Article  CAS  Google Scholar 

  96. Cox JC, Ellington AD. DNA computation function. Curr Biol 2001; 11:R336.

    Article  CAS  Google Scholar 

  97. Cox JP. Long-term data storage in DNA. Trends Biotechnol 2001; 19:247–250.

    Article  CAS  Google Scholar 

  98. Unger R, Moult J. Towards computing with proteins. Proteins 2006; 63:53–64.

    Article  CAS  Google Scholar 

  99. Service RF. Materials and biology. Nanotechnology takes aim at cancer. Science 2005; 310:1132–1134.

    Article  Google Scholar 

  100. Cheng MM, Cuda G, Bunimovich YL, et al. Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 2006;10:11–19.

    Article  CAS  Google Scholar 

  101. Freitas RA, Jr. Nanomedicine, vol. I: Basic Capabilities. Georgetown, TX: Landes Bioscience, 1999.

    Google Scholar 

  102. Freitas RA, Jr. Nanomedicine, vol. Iia: Biocompatibility. Georgetown, TX: Landes Bioscience, 2003.

    Google Scholar 

  103. Roco MC. Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 2003; 14:337–346.

    Article  CAS  Google Scholar 

  104. Kricka LJ, Park JY, Li SF, Fortina P. Miniaturized detection technology in molecular diagnostics. Expert Rev Mol Diagn 2005; 5:549–559.

    Article  CAS  Google Scholar 

  105. Fortina P, Kricka LJ, Surrey S, Grodzinski P. Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol 2005; 23:168–173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Shoseyov, O., Levy, I. (2008). Nanobiotechnology Overview. In: Shoseyov, O., Levy, I. (eds) NanoBioTechnology. Humana Press. https://doi.org/10.1007/978-1-59745-218-2_1

Download citation

Publish with us

Policies and ethics