Skip to main content

Clinical Significance of Histone Deacetylase Inhibitors in Cancer

  • Chapter
Apoptosis, Cell Signaling, and Human Diseases

Summary

Chromatin remodeling agents modulate gene expression in tumor cells. Acetylation and deacetylation are catalyzed by specific enzyme families, histone acetyltransferases (HATs) and deacetylases (HDACs), respectively. Aberrant acetylation of histone and nonhistone proteins has been linked to malignant diseases. HDAC inhibitors bear great potential as new drugs because of their ability to modulate transcription, induce differentiation and apoptosis, and inhibit angiogenesis. Furthermore, HDAC inhibitors also enhance the activity of other cancer therapeutics such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), chemotherapeutic drugs, and radiotherapy. Some of the HDAC inhibitors are currently under clinical investigations. This chapter reviews the chemistry and the biology of HDACs and HDAC inhibitors, laying particular emphasis on those agents which have potentials for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Plass C. Cancer epigenomics. Hum Mol Genet 2002;11:2479–2488.

    Article  PubMed  CAS  Google Scholar 

  2. Jones PA. DNA methylation and cancer. Oncogene 2002;21:5358–5360.

    Article  PubMed  CAS  Google Scholar 

  3. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature 1997;389:349–352.

    Article  PubMed  CAS  Google Scholar 

  4. Glass CK, Rosenfeld MG. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 2000;14:121–141.

    PubMed  CAS  Google Scholar 

  5. Kouzarides T. Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 1999;9:40–48.

    Article  PubMed  CAS  Google Scholar 

  6. Grignani F, De Matteis S, Nervi C, et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998;391:815–818.

    Article  PubMed  CAS  Google Scholar 

  7. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH, Jr, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998;391:811–814.

    Article  PubMed  CAS  Google Scholar 

  8. Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403: 41–45.

    Article  PubMed  CAS  Google Scholar 

  9. Johnstone RW, Licht JD. Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 2003;4:13–18.

    Article  PubMed  CAS  Google Scholar 

  10. Kurdistani SK, Grunstein M. Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 2003;4:276–284.

    Article  PubMed  CAS  Google Scholar 

  11. Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 1996;272:408–411.

    Article  PubMed  CAS  Google Scholar 

  12. Yang WM, Inouye C, Zeng Y, Bearss D, Seto E. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci USA 1996;93:12,845–12,850.

    Article  PubMed  CAS  Google Scholar 

  13. Emiliani S, Fischle W, Van Lint C, Al-Abed Y, Verdin E. Characterization of a human RPD3 ortholog, HDAC3. Proc Natl Acad Sci USA 1998;95:2795–2800.

    Article  PubMed  CAS  Google Scholar 

  14. Grozinger CM, Hassig CA, Schreiber SL. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci USA 1999;96:4868–4873.

    Article  PubMed  CAS  Google Scholar 

  15. Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 2002; 277:25,748–25,755.

    Article  PubMed  CAS  Google Scholar 

  16. Fischle W, Emiliani S, Hendzel MJ, et al. A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p. J Biol Chem 1999;274:11,713–11,720.

    Article  PubMed  CAS  Google Scholar 

  17. Gray SG, Ekstrom TJ. The human histone deacetylase family. Exp Cell Res 2001; 262:75–83.

    Article  PubMed  CAS  Google Scholar 

  18. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003;370: 737–749.

    Article  PubMed  Google Scholar 

  19. Verdin E, Dequiedt F, Kasler HG. Class II histone deacetylases: versatile regulators. Trends Genet 2003;19:286–293.

    Article  PubMed  CAS  Google Scholar 

  20. McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest 2005;115:538–546.

    PubMed  CAS  Google Scholar 

  21. Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 1993;7:592–604.

    Article  PubMed  CAS  Google Scholar 

  22. Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999;260:273–279.

    Article  PubMed  CAS  Google Scholar 

  23. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000;403:795–800.

    Article  PubMed  CAS  Google Scholar 

  24. Bordone L, Guarente L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 2005;6:298–305.

    Article  PubMed  CAS  Google Scholar 

  25. Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999;13:2570–2580.

    Article  PubMed  CAS  Google Scholar 

  26. Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001;410:227–230.

    Article  PubMed  CAS  Google Scholar 

  27. Ford J, Jiang M, Milner J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res 2005;65:10,457–10,463.

    Article  PubMed  CAS  Google Scholar 

  28. Van Lint C, Emiliani S, Verdin E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 1996;5:245–253.

    PubMed  Google Scholar 

  29. Lagger G, O’Carroll D, Rembold M, et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 2002;21:2672–2681.

    Article  PubMed  CAS  Google Scholar 

  30. Bandyopadhyay D, Mishra A, Medrano EE. Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-mediated pathway. Cancer Res 2004;64:7706–7710.

    Article  PubMed  CAS  Google Scholar 

  31. Singh TR, Shankar S, Srivastava RK. HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene 2005;24:4609–4623.

    Article  PubMed  CAS  Google Scholar 

  32. Marks PA, Miller T, Richon VM. Histone deacetylases. Curr Opin Pharmacol 2003;3: 344–351.

    Article  PubMed  CAS  Google Scholar 

  33. Fandy TE, Shankar S, Ross DD, Sausville E, Srivastava RK. Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma. Neoplasia 2005;7:646–657.

    Article  PubMed  CAS  Google Scholar 

  34. Fang JY. Histone deacetylase inhibitors, anticancerous mechanism and therapy for gastrointestinal cancers. J Gastroenterol Hepatol 2005;20:988–994.

    PubMed  CAS  Google Scholar 

  35. Rosato RR, Wang Z, Gopalkrishnan RV, Fisher PB, Grant S. Evidence of a functional role for the cyclin-dependent kinase-inhibitor p21WAF1/CIP1/MDA6 in promoting differentiation and preventing mitochondrial dysfunction and apoptosis induced by sodium butyrate in human myelomonocytic leukemia cells (U937). Int J Oncol 2001;19:181–191.

    PubMed  CAS  Google Scholar 

  36. Liu F, Dowling M, Yang XJ, Kao GD. Caspase-mediated specific cleavage of human histone deacetylase 4. J Biol Chem 2004;279:34,537–34,546.

    Article  PubMed  CAS  Google Scholar 

  37. Paroni G, Mizzau M, Henderson C, Del Sal G, Schneider C, Brancolini C. Caspasedependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol Biol Cell 2004;15:2804–2818.

    Article  PubMed  CAS  Google Scholar 

  38. Kwon SH, Ahn SH, Kim YK, et al. Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J Biol Chem 2002;277:2073–2080.

    Article  PubMed  CAS  Google Scholar 

  39. Marks PA, Richon VM, Miller T, Kelly WK. Histone deacetylase inhibitors. Adv Cancer Res 2004;91:137–168.

    Article  PubMed  CAS  Google Scholar 

  40. Boyle GM, Martyn AC, Parsons PG. Histone deacetylase inhibitors and malignant melanoma. Pigment Cell Res 2005;18:160–166.

    Article  PubMed  CAS  Google Scholar 

  41. Butler LM, Agus DB, Scher HI, et al. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 2000;60:5165–5170.

    PubMed  CAS  Google Scholar 

  42. Tang XX, Robinson ME, Riceberg JS, et al. Favorable neuroblastoma genes and molecular therapeutics of neuroblastoma. Clin Cancer Res 2004;10:5837–5844.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang Y, Adachi M, Zhao X, Kawamura R, Imai K. Histone deacetylase inhibitors FK228, N-(2-aminophenyl)-4-[N-(pyridin-3-yl-methoxycarbonyl)amino-methyl]benzamide and m-carboxycinnamic acid bis-hydroxamide augment radiation-induced cell death in gastrointestinal adenocarcinoma cells. Int J Cancer 2004;110:301–308.

    Article  PubMed  CAS  Google Scholar 

  44. Takimoto R, Kato J, Terui T, et al. Augmentation of Antitumor Effects of p53 Gene Therapy by Combination with HDAC Inhibitor. Cancer Biol Ther 2005;4:421–428.

    PubMed  CAS  Google Scholar 

  45. Sakajiri S, Kumagai T, Kawamata N, Saitoh T, Said JW, Koeffler HP. Histone deacetylase inhibitors profoundly decrease proliferation of human lymphoid cancer cell lines. Exp Hematol 2005;33:53–61.

    Article  PubMed  CAS  Google Scholar 

  46. Bordin M, D’Atri F, Guillemot L, Citi S. Histone deacetylase inhibitors up-regulate the expression of tight junction proteins. Mol Cancer Res 2004;2:692–701.

    PubMed  CAS  Google Scholar 

  47. Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 2004;101:18,030–18,035.

    Article  PubMed  CAS  Google Scholar 

  48. Park JH, Jung Y, Kim TY, et al. Class I histone deacetylase-selective novel synthetic inhibitors potently inhibit human tumor proliferation. Clin Cancer Res 2004;10: 5271–5281.

    Article  PubMed  CAS  Google Scholar 

  49. Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 2001;13:477–483.

    Article  PubMed  CAS  Google Scholar 

  50. McLaughlin F, La Thangue NB. Histone deacetylase inhibitors open new doors in cancer therapy. Biochem Pharmacol 2004;68:1139–1144.

    Article  PubMed  CAS  Google Scholar 

  51. Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov 2002;1:287–299.

    Article  PubMed  CAS  Google Scholar 

  52. Suzuki T, Ando T, Tsuchiya K, et al. Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. J Med Chem 1999;42:3001–3003.

    Article  PubMed  CAS  Google Scholar 

  53. Maggio SC, Rosato RR, Kramer LB, et al. The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells. Cancer Res 2004;64:2590–2600.

    Article  PubMed  CAS  Google Scholar 

  54. Monneret C. Histone deacetylase inhibitors. Eur J Med Chem 2005;40:1–13.

    Article  PubMed  CAS  Google Scholar 

  55. Ryan QC, Headlee D, Acharya M, et al. Phase I and pharmacokinetic study of MS-275, a histone deacetylase inhibitor, in patients with advanced and refractory solid tumors or lymphoma. J Clin Oncol 2005;23:3912–3922.

    Article  PubMed  CAS  Google Scholar 

  56. Tsuji N, Kobayashi M, Nagashima K, Wakisaka Y, Koizumi K. A new antifungal antibiotic, trichostatin. J Antibiot (Tokyo) 1976;29:1–6.

    CAS  Google Scholar 

  57. Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990;265: 17,174–17,179.

    PubMed  CAS  Google Scholar 

  58. Taghiyev AF, Guseva NV, Sturm MT, Rokhlin OW, Cohen MB. Trichostatin A (TSA) Sensitizes the Human Prostatic Cancer Cell Line DU145 to Death Receptor Ligands Treatment. Cancer Biol Ther 2005;4:382–390.

    PubMed  CAS  Google Scholar 

  59. Tsatsoulis A. The role of apoptosis in thyroid disease. Minerva Med 2002;93:169–180.

    PubMed  CAS  Google Scholar 

  60. Inoue H, Shiraki K, Ohmori S, et al. Histone deacetylase inhibitors sensitize human colonic adenocarcinoma cell lines to TNF-related apoptosis inducing ligand-mediated apoptosis. Int J Mol Med 2002;9:521–525.

    PubMed  CAS  Google Scholar 

  61. Fronsdal K, Saatcioglu F. Histone deacetylase inhibitors differentially mediate apoptosis in prostate cancer cells. Prostate 2005;62:299–306.

    Article  PubMed  CAS  Google Scholar 

  62. Toth KF, Knoch TA, Wachsmuth M, et al. Trichostatin A-induced histone acetylation causes decondensation of interphase chromatin. J Cell Sci 2004;117:4277–4287.

    Article  PubMed  CAS  Google Scholar 

  63. Vanhaecke T, Henkens T, Kass GE, Rogiers V. Effect of the histone deacetylase inhibitor trichostatin A on spontaneous apoptosis in various types of adult rat hepatocyte cultures. Biochem Pharmacol 2004;68:753–760.

    Article  PubMed  CAS  Google Scholar 

  64. Vanhaecke T, Papeleu P, Elaut G, Rogiers V. Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view. Curr Med Chem 2004;11:1629–1643.

    PubMed  CAS  Google Scholar 

  65. Wang ZM, Hu J, Zhou D, Xu ZY, Panasci LC, Chen ZP. Trichostatin A inhibits proliferation and induces expression of p21WAF and p27 in human brain tumor cell lines. Ai Zheng 2002;21:1100–1105.

    PubMed  Google Scholar 

  66. Yamashita Y, Shimada M, Harimoto N, et al. Histone deacetylase inhibitor trichostatin A induces cell-cycle arrest/apoptosis and hepatocyte differentiation in human hepatoma cells. Int J Cancer 2003;103:572–576.

    Article  PubMed  CAS  Google Scholar 

  67. Blagosklonny MV, Robey R, Sackett DL, et al. Histone deacetylase inhibitors all induce p21 but differentially cause tubulin acetylation, mitotic arrest, and cytotoxicity. Mol Cancer Ther 2002;1:937–941.

    PubMed  CAS  Google Scholar 

  68. Williams RJ, Trichostatin A. an inhibitor of histone deacetylase, inhibits hypoxia-induced angiogenesis. Expert Opin Investig Drugs 2001;10:1571–1573.

    Article  PubMed  CAS  Google Scholar 

  69. Shankar S, Singh TR, Fandy TE, Luetrakul T, Ross DD, Srivastava RK. Interactive effects of histone deacetylase inhibitors and TRAIL on apoptosis in human leukemia cells: Involvement of both death receptor and mitochondrial pathways. Int J Mol Med 2005;16:1125–1138.

    PubMed  CAS  Google Scholar 

  70. Touma SE, Goldberg JS, Moench P, et al. Retinoic acid and the histone deacetylase inhibitor trichostatin a inhibit the proliferation of human renal cell carcinoma in a xenograft tumor model. Clin Cancer Res 2005;11:3558–3566.

    Article  PubMed  CAS  Google Scholar 

  71. Canes D, Chiang GJ, Billmeyer BR, et al. Histone deacetylase inhibitors upregulate plakoglobin expression in bladder carcinoma cells and display antineoplastic activity in vitro and in vivo. Int J Cancer 2005;113:841–848.

    Article  PubMed  CAS  Google Scholar 

  72. Choi JH, Oh SW, Kang MS, Kwon HJ, Oh GT, Kim DY. Trichostatin A attenuates airway inflammation in mouse asthma model. Clin Exp Allergy 2005;35:89–96.

    Article  PubMed  CAS  Google Scholar 

  73. Jung M, Brosch G, Kolle D, Scherf H, Gerhauser C, Loidl P. Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation. J Med Chem 1999;42:4669–4679.

    Article  PubMed  CAS  Google Scholar 

  74. Kim YB, Lee KH, Sugita K, Yoshida M, Horinouchi S. Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase. Oncogene 1999;18:2461–2470.

    Article  PubMed  CAS  Google Scholar 

  75. Su GH, Sohn TA, Ryu B, Kern SE. A novel histone deacetylase inhibitor identified by highthroughput transcriptional screening of a compound library. Cancer Res 2000;60:3137–3142.

    PubMed  CAS  Google Scholar 

  76. Johnson J, Hunter R, McElveen R, Qian XH, Baliga BS, Pace BS. Fetal hemoglobin induction by the histone deacetylase inhibitor, scriptaid. Cell Mol Biol (Noisy-le-grand) 2005; 51:229–238.

    CAS  Google Scholar 

  77. Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 1993;268:22,429–22,435.

    PubMed  CAS  Google Scholar 

  78. Brosch G, Ransom R, Lechner T, Walton JD, Loidl P. Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum. Plant Cell 1995;7:1941–1950.

    Article  PubMed  CAS  Google Scholar 

  79. Darkin-Rattray SJ, Gurnett AM, Myers RW, et al. Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci USA 1996;93:13,143–13,147.

    Article  PubMed  CAS  Google Scholar 

  80. Kim JS, Jeung HK, Cheong JW, et al. Apicidin potentiates the imatinib-induced apoptosis of Bcr-Abl-positive human leukaemia cells by enhancing the activation of mitochondriadependent caspase cascades. Br J Haematol 2004;124:166–178.

    Article  PubMed  CAS  Google Scholar 

  81. Cheong JW, Chong SY, Kim JY, et al. Induction of apoptosis by apicidin, a histone deacetylase inhibitor, via the activation of mitochondria-dependent caspase cascades in human Bcr-Abl-positive leukemia cells. Clin Cancer Res 2003;9:5018–5027.

    PubMed  CAS  Google Scholar 

  82. Kouraklis G, Theocharis S. Histone deacetylase inhibitors and anticancer therapy. Curr Med Chem Anti-Canc Agents 2002;2:477–484.

    Article  CAS  Google Scholar 

  83. Hong J, Ishihara K, Yamaki K, et al. Apicidin, a histone deacetylase inhibitor, induces differentiation of HL-60 cells. Cancer Lett 2003;189:197–206.

    Article  PubMed  CAS  Google Scholar 

  84. Han JW, Ahn SH, Park SH, et al. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res 2000;60: 6068–6074.

    PubMed  CAS  Google Scholar 

  85. Han JW, Ahn SH, Kim YK, et al. Activation of p21(WAF1/Cip1) transcription through Sp1 sites by histone deacetylase inhibitor apicidin: involvement of protein kinase C. J Biol Chem 2001;276:42,084–42,090.

    Article  PubMed  CAS  Google Scholar 

  86. Kim JS, Lee S, Lee T, Lee YW, Trepel JB. Transcriptional activation of p21(WAF1/CIP1) by apicidin, a novel histone deacetylase inhibitor. Biochem Biophys Res Commun 2001; 281:866–871.

    Article  PubMed  CAS  Google Scholar 

  87. Kim SH, Ahn S, Han JW, et al. Apicidin is a histone deacetylase inhibitor with anti-invasive and anti-angiogenic potentials. Biochem Biophys Res Commun 2004;315:964–970.

    Article  PubMed  CAS  Google Scholar 

  88. Meinke PT, Colletti SL, Doss G, et al. Synthesis of apicidin-derived quinolone derivatives: parasite-selective histone deacetylase inhibitors and antiproliferative agents. J Med Chem 2000;43:4919–4922.

    Article  PubMed  CAS  Google Scholar 

  89. Meinke PT, Liberator P. Histone deacetylase: a target for antiproliferative and antiprotozoal agents. Curr Med Chem 2001;8:211–235.

    PubMed  CAS  Google Scholar 

  90. Kwon HJ, Owa T, Hassig CA. Shimada J, Schreiber SL. Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc Natl Acad Sci USA 1998;95:3356–3361.

    Article  PubMed  CAS  Google Scholar 

  91. Hoffmann K, Brosch G, Loidl P, Jung M. First non-radioactive assay for in vitro screening of histone deacetylase inhibitors. Pharmazie 2000;55:601–606.

    PubMed  CAS  Google Scholar 

  92. Marks PA, Richon VM, Rifkind RA. Cell cycle regulatory proteins are targets for induced differentiation of transformed cells: Molecular and clinical studies employing hybrid polar compounds. Int J Hematol 1996;63:1–17.

    Article  PubMed  CAS  Google Scholar 

  93. Marks PA, Rifkind RA. Hexamethylene bisacetamide-induced differentiation of transformed cells: molecular and cellular effects and therapeutic application. Int J Cell Cloning 1988;6:230–240.

    PubMed  CAS  Google Scholar 

  94. Richon VM, Emiliani S, Verdin E, et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 1998;95:3003–3007.

    Article  PubMed  CAS  Google Scholar 

  95. Cohen LA, Amin S, Marks PA, Rifkind RA, Desai D, Richon VM. Chemoprevention of carcinogen-induced mammary tumorigenesis by the hybrid polar cytodifferentiation agent, suberanilohydroxamic acid (SAHA). Anticancer Res 1999;19:4999–5005.

    PubMed  CAS  Google Scholar 

  96. Chinnaiyan P, Vallabhaneni G, Armstrong E, Huang SM, Harari PM. Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys 2005;62:223–229.

    Article  PubMed  CAS  Google Scholar 

  97. Qiu L, Burgess A, Fairlie DP, Leonard H, Parsons PG, Gabrielli BG. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell 2000;11:2069–2083.

    PubMed  CAS  Google Scholar 

  98. Vanoosten RL, Moore JM, Karacay B, Griffith TS. Histone Deacetylase Inhibitors Modulate Renal Cell Carcinoma Sensitivity to TRAIL/Apo-2L-induced Apoptosis by Enhancing TRAIL-R2 Expression. Cancer Bio Ther 2005;4:1104–1112.

    CAS  Google Scholar 

  99. Doi S, Soda H, Oka M, et al. The histone deacetylase inhibitor FR901228 induces caspasedependent apoptosis via the mitochondrial pathway in small cell lung cancer cells. Mol Cancer Ther 2004;3:1397–1402.

    PubMed  CAS  Google Scholar 

  100. Khan SB, Maududi T, Barton K, Ayers J, Alkan S. Analysis of histone deacetylase inhibitor, depsipeptide (FR901228), effect on multiple myeloma. Br J Haematol 2004;125:156–161.

    Article  PubMed  CAS  Google Scholar 

  101. Sawa H, Murakami H, Kumagai M, et al. Histone deacetylase inhibitor, FK228, induces apoptosis and suppresses cell proliferation of human glioblastoma cells in vitro and in vivo. Acta Neuropathol (Berl) 2004;107:523–531.

    Article  CAS  Google Scholar 

  102. Sato N, Ohta T, Kitagawa H, et al. FR901228, a novel histone deacetylase inhibitor, induces cell cycle arrest and subsequent apoptosis in refractory human pancreatic cancer cells. Int J Oncol 2004;24:679–685.

    PubMed  CAS  Google Scholar 

  103. Klisovic DD, Katz SE, Effron D, et al. Depsipeptide (FR901228) inhibits proliferation and induces apoptosis in primary and metastatic human uveal melanoma cell lines. Invest Ophthalmol Vis Sci 2003;44:2390–2398.

    Article  PubMed  Google Scholar 

  104. Aron JL, Parthun MR, Marcucci G, et al. Depsipeptide (FR901228) induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase 8-mediated apoptosis and down-regulation of c-FLIP protein. Blood 2003;102:652–658.

    Article  PubMed  CAS  Google Scholar 

  105. Klisovic MI, Maghraby EA, Parthun MR, et al. Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia 2003;17:350–358.

    Article  PubMed  CAS  Google Scholar 

  106. Sasakawa Y, Naoe Y, Inoue T, et al. Effects of FK228, a novel histone deacetylase inhibitor, on human lymphoma U-937 cells in vitro and in vivo. Biochem Pharmacol 2002;64: 1079–1090.

    Article  PubMed  CAS  Google Scholar 

  107. Sasakawa Y, Naoe Y, Noto T, et al. Antitumor efficacy of FK228, a novel histone deacetylase inhibitor, depends on the effect on expression of angiogenesis factors. Biochem Pharmacol 2003;66:897–906.

    Article  PubMed  CAS  Google Scholar 

  108. Mie Lee Y, Kim SH, Kim HS, et al. Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1alpha activity. Biochem Biophys Res Commun 2003;300:241–246.

    Article  PubMed  Google Scholar 

  109. Kwon HJ, Kim MS, Kim MJ, Nakajima H, Kim KW. Histone deacetylase inhibitor FK228 inhibits tumor angiogenesis. Int J Cancer 2002;97:290–296.

    Article  PubMed  CAS  Google Scholar 

  110. Klisovic DD, Klisovic MI, Effron D, Liu S, Marcucci G, Katz SE. Depsipeptide inhibits migration of primary and metastatic uveal melanoma cell lines in vitro: a potential strategy for uveal melanoma. Melanoma Res 2005;15:147–153.

    Article  PubMed  CAS  Google Scholar 

  111. Imai T, Adachi S, Nishijo K, et al. FR901228 induces tumor regression associated with induction of Fas ligand and activation of Fas signaling in human osteosarcoma cells. Oncogene 2003;22:9231–9242.

    Article  PubMed  CAS  Google Scholar 

  112. Byrd JC, Marcucci G, Parthun MR, et al. A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia. Blood 2005;105:959–967.

    Article  PubMed  CAS  Google Scholar 

  113. Lea MA, Randolph VM, Patel M. Increased acetylation of histones induced by diallyl disulfide and structurally related molecules. Int J Oncol 1999;15:347–352.

    PubMed  CAS  Google Scholar 

  114. Druesne N, Pagniez A, Mayeur C, et al. Diallyl disulfide (DADS) increases histone acetylation and p21(waf1/cip1) expression in human colon tumor cell lines. Carcinogenesis 2004;25:1227–1236.

    Article  PubMed  CAS  Google Scholar 

  115. Pina IC, Gautschi JT, Wang GY, et al. Psammaplins from the sponge Pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase. J Org Chem 2003;68:3866–3873.

    Article  PubMed  CAS  Google Scholar 

  116. Jiang Y, Ahn EY, Ryu SH, et al. Cytotoxicity of psammaplin A from a two-sponge association may correlate with the inhibition of DNA replication. BMC Cancer 2004;4:70.

    Article  PubMed  CAS  Google Scholar 

  117. Shim JS, Lee HS, Shin J, Kwon HJ, Psammaplin A. A marine natural product, inhibits aminopeptidase N and suppresses angiogenesis in vitro. Cancer Lett 2004;203:163–169.

    Article  PubMed  CAS  Google Scholar 

  118. Park Y, Liu Y, Hong J, et al. New bromotyrosine derivatives from an association of two sponges, Jaspis wondoensis and Poecillastra wondoensis. J Nat Prod 2003;66:1495–1498.

    Article  PubMed  CAS  Google Scholar 

  119. Nicolaou KC, Hughes R, Pfefferkorn JA, Barluenga S. Optimization and mechanistic studies of psammaplin A type antibacterial agents active against methicillin-resistant Staphylococcus aureus (MRSA). Chemistry 2001;7:4296–4310.

    Article  PubMed  CAS  Google Scholar 

  120. Pham NB, Butler MS, Quinn RJ. Isolation of psammaplin A 11′-sulfate and bisaprasin 11?-sulfate from the marine sponge Aplysinella rhax. J Nat Prod 2000;63:393–395.

    Article  PubMed  CAS  Google Scholar 

  121. Kim D, Lee IS, Jung JH, Lee CO, Choi SU. Psammaplin A, a natural phenolic compound, has inhibitory effect on human topoisomerase II and is cytotoxic to cancer cells. Anticancer Res 1999;19:4085–4090.

    PubMed  CAS  Google Scholar 

  122. Kim D, Lee IS, Jung JH, Yang SI. Psammaplin A, a natural bromotyrosine derivative from a sponge, possesses the antibacterial activity against methicillin-resistant Staphylococcus aureus and the DNA gyrase-inhibitory activity. Arch Pharm Res 1999;22:25–29.

    Article  PubMed  CAS  Google Scholar 

  123. Jung JH, Sim CJ, Lee CO. Cytotoxic compounds from a two-sponge association. J Nat Prod 1995;58:1722–1726.

    Article  PubMed  CAS  Google Scholar 

  124. Yoshida M, Hoshikawa Y, Koseki K, Mori K, Beppu T. Structural specificity for biological activity of trichostatin A, a specific inhibitor of mammalian cell cycle with potent differentiation-inducing activity in Friend leukemia cells. J Antibiot (Tokyo) 1990;43:1101–1106.

    CAS  Google Scholar 

  125. Yoshida M, Shimazu T, Matsuyama A. Protein deacetylases: enzymes with functional diversity as novel therapeutic targets. Prog Cell Cycle Res 2003;5:269–278.

    PubMed  Google Scholar 

  126. Strait KA, Warnick CT, Ford CD, Dabbas B, Hammond EH, Ilstrup SJ. Histone deacetylase inhibitors induce G2-checkpoint arrest and apoptosis in cisplatinum-resistant ovarian cancer cells associated with overexpression of the Bcl-2-related protein Bad. Mol Cancer Ther 2005;4:603–611.

    Article  PubMed  CAS  Google Scholar 

  127. Marks PA, Jiang X. Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle 2005;4:549–551.

    PubMed  CAS  Google Scholar 

  128. Mai A, Massa S, Rotili D, et al. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. Med Res Rev 2005;25:261–309.

    Article  PubMed  CAS  Google Scholar 

  129. Henderson C, Brancolini C. Apoptotic pathways activated by histone deacetylase inhibitors: implications for the drug-resistant phenotype. Drug Resist Updat 2003;6: 247–256.

    Article  PubMed  CAS  Google Scholar 

  130. Donadelli M, Costanzo C, Faggioli L, et al. Trichostatin A, an inhibitor of histone deacetylases, strongly suppresses growth of pancreatic adenocarcinoma cells. Mol Carcinog 2003;38:59–69.

    Article  PubMed  CAS  Google Scholar 

  131. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001;1:194–202.

    Article  PubMed  CAS  Google Scholar 

  132. Nome RV, Bratland A, Harman G, Fodstad O, Andersson Y, Ree AH. Cell cycle checkpoint signaling involved in histone deacetylase inhibition and radiation-induced cell death. Mol Cancer Ther 2005;4:1231–1238.

    Article  PubMed  CAS  Google Scholar 

  133. Fenic I, Sonnack V, Failing K, Bergmann M, Steger K. In vivo effects of histone-deacetylase inhibitor trichostatin-A on murine spermatogenesis. J Androl 2004;25:811–818.

    PubMed  CAS  Google Scholar 

  134. Hu J, Colburn NH. Histone deacetylase inhibition down-regulates cyclin D1 transcription by inhibiting nuclear factor-kappaB/p65 DNA binding. Mol Cancer Res 2005;3:100–109.

    Article  PubMed  CAS  Google Scholar 

  135. Kim MS, Kwon HJ, Lee YM, et al. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 2001;7:437–443.

    Article  PubMed  Google Scholar 

  136. Zgouras D, Becker U, Loitsch S, Stein J. Modulation of angiogenesis-related protein synthesis by valproic acid. Biochem Biophys Res Commun 2004;316:693–697.

    Article  PubMed  CAS  Google Scholar 

  137. Sawa H, Murakami H, Ohshima Y, et al. Histone deacetylase inhibitors such as sodium butyrate and trichostatin A inhibit vascular endothelial growth factor (VEGF) secretion from human glioblastoma cells. Brain Tumor Pathol 2002;19:77–81.

    Article  PubMed  CAS  Google Scholar 

  138. Deroanne CF, Bonjean K, Servotte S, et al. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 2002;21:427–436.

    Article  PubMed  CAS  Google Scholar 

  139. Chinnaiyan P, Varambally S, Tomlins SA, et al. Enhancing the antitumor activity of ErbB blockade with histone deacetylase (HDAC) inhibition. Int J Cancer 2005;118:1041–1050.

    Article  CAS  Google Scholar 

  140. Duan H, Heckman CA, Boxer LM. Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol 2005;25: 1608–1619.

    Article  PubMed  CAS  Google Scholar 

  141. Myzak MC, Karplus PA, Chung FL, Dashwood RH. A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 2004;64:5767–5774.

    Article  PubMed  CAS  Google Scholar 

  142. Acharya MR, Figg WD. Histone deacetylase inhibitor enhances the anti-leukemic activity of an established nucleoside analogue. Cancer Biol Ther 2004;3:719–720.

    Article  PubMed  CAS  Google Scholar 

  143. Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res 2003;63: 3637–3645.

    PubMed  CAS  Google Scholar 

  144. Lavelle D, Chen YH, Hankewych M, DeSimone J. Histone deacetylase inhibitors increase p21(WAF1) and induce apoptosis of human myeloma cell lines independent of decreased IL-6 receptor expression. Am J Hematol 2001;68:170–178.

    Article  PubMed  CAS  Google Scholar 

  145. Rocchi P, Tonelli R, Camerin C, et al. p21Waf1/Cip1 is a common target induced by shortchain fatty acid HDAC inhibitors (valproic acid, tributyrin and sodium butyrate) in neuroblastoma cells. Oncol Rep 2005;13:1139–1144.

    PubMed  CAS  Google Scholar 

  146. Mitsiades CS, Poulaki V, McMullan C, et al. Novel histone deacetylase inhibitors in the treatment of thyroid cancer. Clin Cancer Res 2005;11:3958–3965.

    Article  PubMed  CAS  Google Scholar 

  147. Yokota T, Matsuzaki Y, Miyazawa K, Zindy F, Roussel MF, Sakai T. Histone deacetylase inhibitors activate INK4d gene through Sp1 site in its promoter. Oncogene 2004;23: 5340–5349.

    Article  PubMed  CAS  Google Scholar 

  148. Hitomi T, Matsuzaki Y, Yokota T, Takaoka Y, Sakai T. p15(INK4b) in HDAC inhibitorinduced growth arrest. FEBS Lett 2003;554:347–350.

    Article  PubMed  CAS  Google Scholar 

  149. Dehm SM, Hilton TL, Wang EH, Bonham K. SRC proximal and core promoter elements dictate TAF1 dependence and transcriptional repression by histone deacetylase inhibitors. Mol Cell Biol 2004;24:2296–2307.

    Article  PubMed  CAS  Google Scholar 

  150. Heruth DP, Zirnstein GW, Bradley JF, Rothberg PG. Sodium butyrate causes an increase in the block to transcriptional elongation in the c-myc gene in SW837 rectal carcinoma cells. J Biol Chem 1993;268:20,466–20,472.

    PubMed  CAS  Google Scholar 

  151. Lallemand F, Courilleau D, Sabbah M, Redeuilh G, Mester J. Direct inhibition of the expression of cyclin D1 gene by sodium butyrate. Biochem Biophys Res Commun 1996; 229:163–169.

    Article  PubMed  CAS  Google Scholar 

  152. Souleimani A, Asselin C. Regulation of c-myc expression by sodium butyrate in the colon carcinoma cell line Caco-2. FEBS Lett 1993;326:45–50.

    Article  PubMed  CAS  Google Scholar 

  153. Takai N, Desmond JC, Kumagai T, et al. Histone deacetylase inhibitors have a profound antigrowth activity in endometrial cancer cells. Clin Cancer Res 2004;10:1141–1149.

    Article  PubMed  CAS  Google Scholar 

  154. Vaziri C, Stice L, Faller DV. Butyrate-induced G1 arrest results from p21-independent disruption of retinoblastoma protein-mediated signals. Cell Growth Differ 1998;9:465–474.

    PubMed  CAS  Google Scholar 

  155. Juan LJ, Shia WJ, Chen MH, et al. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem 2000;275:20,436–20,443.

    Article  PubMed  CAS  Google Scholar 

  156. Luo J, Nikolaev AY, Imai S. et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001;107:137–148.

    Article  PubMed  CAS  Google Scholar 

  157. Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 2000;408:377–381.

    Article  PubMed  CAS  Google Scholar 

  158. Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001;107:149–159.

    Article  PubMed  CAS  Google Scholar 

  159. Savickiene J, Treigyte G, Pivoriunas A, Navakauskiene R, Magnusson KE. Sp1 and NFkappaB transcription factor activity in the regulation of the p21 and FasL promoters during promyelocytic leukemia cell monocytic differentiation and its associated apoptosis. Ann N Y Acad Sci 2004;1030:569–577.

    Article  PubMed  CAS  Google Scholar 

  160. Varshochi R, Halim F, Sunters A, et al. ICI182,780 induces p21Waf1 gene transcription through releasing histone deacetylase 1 and estrogen receptor alpha from Sp1 sites to induce cell cycle arrest in MCF-7 breast cancer cell line. J Biol Chem 2005;280: 3185–3196.

    Article  PubMed  CAS  Google Scholar 

  161. Parker SB, Eichele G, Zhang P, et al. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 1995;267:1024–1027.

    Article  PubMed  CAS  Google Scholar 

  162. Rosato RR, Almenara JA, Dai Y, Grant S. Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther 2003;2:1273–1284.

    PubMed  CAS  Google Scholar 

  163. Papeleu P, Vanhaecke T, Elaut G, et al. Differential effects of histone deacetylase inhibitors in tumor and normal cells-what is the toxicological relevance? Crit Rev Toxicol 2005;35:363–378.

    Article  PubMed  CAS  Google Scholar 

  164. Zhang Y, Jung M, Dritschilo A, Jung M. Enhancement of radiation sensitivity of human squamous carcinoma cells by histone deacetylase inhibitors. Radiat Res 2004;161:667–674.

    Article  PubMed  CAS  Google Scholar 

  165. Mori N, Matsuda T, Tadano M, et al. Apoptosis induced by the histone deacetylase inhibitor FR901228 in human T-cell leukemia virus type 1-infected T-cell lines and primary adult T-cell leukemia cells. J Virol 2004;78:4582–4590.

    Article  PubMed  CAS  Google Scholar 

  166. Kim DH, Kim M, Kwon HJ. Histone deacetylase in carcinogenesis and its inhibitors as anti-cancer agents. J Biochem Mol Biol 2003;36:110–119.

    PubMed  CAS  Google Scholar 

  167. Vigushin DM, Coombes RC. Histone deacetylase inhibitors in cancer treatment. Anticancer Drugs 2002;13:1–13.

    Article  PubMed  CAS  Google Scholar 

  168. Amin HM, Saeed S, Alkan S. Histone deacetylase inhibitors induce caspase-dependent apoptosis and downregulation of daxx in acute promyelocytic leukaemia with t(15;17). Br J Haematol 2001;115:287–297.

    Article  PubMed  CAS  Google Scholar 

  169. Chen CS, Weng SC, Tseng PH, Lin HP, Chen CS. Histone Acetylation-independent Effect of Histone Deacetylase Inhibitors on Akt through the Reshuffling of Protein Phosphatase 1 Complexes. J Biol Chem 2005;280:38,879–38,887.

    Article  PubMed  CAS  Google Scholar 

  170. Neuzil J, Swettenham E, Gellert N. Sensitization of mesothelioma to TRAIL apoptosis by inhibition of histone deacetylase: role of Bcl-xL down-regulation. Biochem Biophys Res Commun 2004;314:186–191.

    Article  PubMed  CAS  Google Scholar 

  171. Zhang XD, Gillespie SK, Borrow JM, Hersey P. The histone deacetylase inhibitor suberic bishydroxamate: a potential sensitizer of melanoma to TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis. Biochem Pharmacol 2003;66:1537–1545.

    Article  PubMed  CAS  Google Scholar 

  172. Mitsiades N, Mitsiades CS, Richardson PG, et al. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 2003;101:4055–4062.

    Article  PubMed  CAS  Google Scholar 

  173. Zhang XD, Gillespie SK, Borrow JM, Hersey P. The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol Cancer Ther 2004;3:425–435.

    PubMed  CAS  Google Scholar 

  174. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309–1312.

    Article  PubMed  CAS  Google Scholar 

  175. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002;108:153–164.

    Article  PubMed  CAS  Google Scholar 

  176. Wei MC, Lindsten T, Mootha VK, et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 2000;14:2060–2071.

    PubMed  CAS  Google Scholar 

  177. Kandasamy K, Srinivasula SM, Alnemri ES, et al. Involvement of proapoptotic molecules Bax and Bak in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced mitochondrial disruption and apoptosis: differential regulation of cytochrome c and Smac/DIABLO release. Cancer Res 2003;63:1712–1721.

    PubMed  CAS  Google Scholar 

  178. Grimm S, Bauer MK, Baeuerle PA, Schulze-Osthoff K. Bcl-2 down-regulates the activity of transcription factor NF-kappaB induced upon apoptosis. J Cell Biol 1996;134:13–23.

    Article  PubMed  CAS  Google Scholar 

  179. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999;13:1899–1911.

    Article  PubMed  CAS  Google Scholar 

  180. Gross A. BCL-2 proteins: regulators of the mitochondrial apoptotic program. IUBMB Life 2001;52:231–236.

    Article  PubMed  CAS  Google Scholar 

  181. Degenhardt K, Chen G, Lindsten T, White E. BAX and BAK mediate p53-independent suppression of tumorigenesis. Cancer Cell 2002;2:193–203.

    Article  PubMed  CAS  Google Scholar 

  182. Degenhardt K, Sundararajan R, Lindsten T, Thompson C, White E. Bax and Bak independently promote cytochrome C release from mitochondria. J Biol Chem 2002;277: 14,127–14,134.

    Article  PubMed  CAS  Google Scholar 

  183. Bouillet P, Purton JF, Godfrey DI, et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 2002;415:922–926.

    Article  PubMed  CAS  Google Scholar 

  184. Bouillet P, Strasser A. BH3-only proteins-evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci 2002;115: 1567–1574.

    PubMed  CAS  Google Scholar 

  185. Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dev 1999; 13:239–252.

    Article  PubMed  CAS  Google Scholar 

  186. Deveraux QL, Stennicke HR, Salvesen GS, Reed JC. Endogenous inhibitors of caspases. J Clin Immunol 1999;19:388–398.

    Article  PubMed  CAS  Google Scholar 

  187. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102:33–42.

    Article  PubMed  CAS  Google Scholar 

  188. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102:43–53.

    Article  PubMed  CAS  Google Scholar 

  189. Terui T, Murakami K, Takimoto R, et al. Induction of PIG3 and NOXA through acetylation of p53 at 320 and 373 lysine residues as a mechanism for apoptotic cell death by histone deacetylase inhibitors. Cancer Res 2003;63:8948–8954.

    PubMed  CAS  Google Scholar 

  190. Xu WS, Perez G, Ngo L, Gui CY, Marks PA. Induction of polyploidy by histone deacetylase inhibitor: a pathway for antitumor effects. Cancer Res 2005;65:7832–7839.

    Article  PubMed  CAS  Google Scholar 

  191. Xu Y, Voelter-Mahlknecht S, Mahlknecht U. The histone deacetylase inhibitor suberoylanilide hydroxamic acid down-regulates expression levels of Bcr-abl, c-Myc and HDAC3 in chronic myeloid leukemia cell lines. Int J Mol Med 2005;15:169–172.

    PubMed  CAS  Google Scholar 

  192. Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K. Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 2003;101:3236–3239.

    Article  PubMed  CAS  Google Scholar 

  193. Bradbury CA, Khanim FL, Hayden R, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 2005;19:1751–1759.

    Article  PubMed  CAS  Google Scholar 

  194. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol 2002;29: 15–18.

    PubMed  CAS  Google Scholar 

  195. Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med 2003; 3:643–651.

    Article  PubMed  CAS  Google Scholar 

  196. Folkman J. Angiogenesis and proteins of the hemostatic system. J Thromb Haemost 2003; 1:1681–1682.

    Article  PubMed  CAS  Google Scholar 

  197. Folkman J. Angiogenesis and apoptosis. Semin Cancer Biol 2003;13:159–167.

    Article  PubMed  CAS  Google Scholar 

  198. Folkman J, Kalluri R. Cancer without disease. Nature 2004;427:787.

    Article  PubMed  CAS  Google Scholar 

  199. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 1991;64:327–336.

    Article  PubMed  CAS  Google Scholar 

  200. Folkman J. Antiangiogenic activity of a matrix protein. Cancer Biol Ther 2003;2:53–54.

    PubMed  Google Scholar 

  201. Ravery V, Jouanneau J, Gil Diez S, et al. Immunohistochemical detection of acidic fibroblast growth factor in bladder transitional cell carcinoma. Urol Res 1992;20:211–214.

    Article  PubMed  CAS  Google Scholar 

  202. Allen LE, Maher PA. Expression of basic fibroblast growth factor and its receptor in an invasive bladder carcinoma cell line. J Cell Physiol 1993;155:368–375.

    Article  PubMed  CAS  Google Scholar 

  203. Brown LF, Berse B, Jackman RW, et al. Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am J Pathol 1993;143:1255–1262.

    PubMed  CAS  Google Scholar 

  204. Brown LF, Berse B, Jackman RW, et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res 1993;53:4727–4735.

    PubMed  CAS  Google Scholar 

  205. O’Brien T, Cranston D, Fuggle S, Bicknell R, Harris AL. Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res 1995;55:510–513.

    CAS  Google Scholar 

  206. Caponigro F, Basile M, de Rosa V, Normanno N. New drugs in cancer therapy, National Tumor Institute, Naples, 17–18 June 2004. Anticancer Drugs 2005;16:211–221.

    Article  PubMed  CAS  Google Scholar 

  207. Nam NH, Parang K. Current targets for anticancer drug discovery. Curr Drug Targets 2003;4:159–179.

    Article  PubMed  CAS  Google Scholar 

  208. Wiedmann MW, Caca K. Molecularly targeted therapy for gastrointestinal cancer. Curr Cancer Drug Targets 2005;5:171–193.

    Article  PubMed  CAS  Google Scholar 

  209. Michaelis M, Suhan T, Michaelis UR, et al. Valproic acid induces extracellular signalregulated kinase 1/2 activation and inhibits apoptosis in endothelial cells. Cell Death Differ 2006;13(3):446–453.

    Article  PubMed  CAS  Google Scholar 

  210. He GH, Helbing CC, Wagner MJ, Sensen CW, Riabowol K. Phylogenetic analysis of the ING family of PHD finger proteins. Mol Biol Evol 2005;22:104–116.

    Article  PubMed  CAS  Google Scholar 

  211. Murakami J, Asaumi J, Maki Y,et al. Effects of demethylating agent 5-aza-2(‘)-deoxycytidine and histone deacetylase inhibitor FR901228 on maspin gene expression in oral cancer cell lines. Oral Oncol 2004;40:597–603.

    Article  PubMed  CAS  Google Scholar 

  212. Michaelis M, Michaelis UR, Fleming I, et al. Valproic acid inhibits angiogenesis in vitro and in vivo. Mol Pharmacol 2004;65:520–527.

    Article  PubMed  CAS  Google Scholar 

  213. Bapna A, Vickerstaffe E, Warrington BH, Ladlow M, Fan TP, Ley SV. Polymer-assisted, multi-step solution phase synthesis and biological screening of histone deacetylase inhibitors. Org Biomol Chem 2004;2:611–620.

    Article  PubMed  CAS  Google Scholar 

  214. Momparler RL. Cancer epigenetics. Oncogene 2003;22:6479–6483.

    Article  PubMed  CAS  Google Scholar 

  215. Wang S, Yan-Neale Y, Fischer D, et al. Histone deacetylase 1 represses the small GTPase RhoB expression in human nonsmall lung carcinoma cell line. Oncogene 2003;22:6204–6213.

    Article  PubMed  CAS  Google Scholar 

  216. Liu LT, Chang HC, Chiang LC, Hung WC. Histone deacetylase inhibitor up-regulates RECK to inhibit MMP-2 activation and cancer cell invasion. Cancer Res 2003;63: 3069–3072.

    PubMed  CAS  Google Scholar 

  217. Rossig L, Li H, Fisslthaler B. Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ Res 2002;91:837–844.

    Article  PubMed  Google Scholar 

  218. Pili R, Kruszewski MP, Hager BW, Lantz J, Carducci MA. Combination of phenylbutyrate and 13-cis retinoic acid inhibits prostate tumor growth and angiogenesis. Cancer Res 2001;61:1477–1485.

    PubMed  CAS  Google Scholar 

  219. Qian DZ, Wang X, Kachhap SK, et al. The histone deacetylase inhibitor NVP-LAQ824 inhibits angiogenesis and has a greater antitumor effect in combination with the vascular endothelial growth factor receptor tyrosine kinase inhibitor PTK787/ZK222584. Cancer Res 2004;64:6626–6634.

    Article  PubMed  CAS  Google Scholar 

  220. Nebbioso A, Clarke N, Voltz E, et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 2005;11:77–84.

    Article  PubMed  CAS  Google Scholar 

  221. Inoue S, MacFarlane M, Harper N, Wheat LM, Dyer MJ, Cohen GM. Histone deacetylase inhibitors potentiate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in lymphoid malignancies. Cell Death Differ 2004;11Suppl 2:S193–206.

    Article  PubMed  CAS  Google Scholar 

  222. Facchetti F, Previdi S, Ballarini M, Minucci S, Perego P, La Porta CA. Modulation of proand anti-apoptotic factors in human melanoma cells exposed to histone deacetylase inhibitors. Apoptosis 2004;9:573–582.

    Article  PubMed  CAS  Google Scholar 

  223. Shetty S, Graham BA, Brown JG, et al. Transcription factor NF-kappaB differentially regulates death receptor 5 expression involving histone deacetylase 1. Mol Cell Biol 2005; 25:5404–5416.

    Article  PubMed  CAS  Google Scholar 

  224. Goldsmith KC, Hogarty MD. Targeting programmed cell death pathways with experimental therapeutics: opportunities in high-risk neuroblastoma. Cancer Lett 2005;228:133–141.

    Article  PubMed  CAS  Google Scholar 

  225. Insinga A, Monestiroli S, Ronzoni S, et al. Inhibitors of histone deacetylases induce tumorselective apoptosis through activation of the death receptor pathway. Nat Med 2005;11:71–76.

    Article  PubMed  CAS  Google Scholar 

  226. Insinga A, Minucci S, Pelicci PG. Mechanisms of selective anticancer action of histone deacetylase inhibitors. Cell Cycle 2005;4:741–743.

    PubMed  CAS  Google Scholar 

  227. Suliman A, Lam A, Datta R, Srivastava RK. Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and-independent pathways. Oncogene 2001;20: 2122–2133.

    Article  PubMed  CAS  Google Scholar 

  228. Sartorius U, Schmitz I, Krammer PH. Molecular mechanisms of death-receptor-mediated apoptosis. Chembiochem 2001;2:20–29.

    Article  PubMed  CAS  Google Scholar 

  229. Debatin KM, Krammer PH. Death receptors in chemotherapy and cancer. Oncogene 2004;23:2950–2966.

    Article  PubMed  CAS  Google Scholar 

  230. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998;94:481–490.

    Article  PubMed  CAS  Google Scholar 

  231. Singh TR, Shankar S, Chen X, Asim M, Srivastava RK. Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res 2003;63: 5390–5400.

    PubMed  CAS  Google Scholar 

  232. Shankar S, Singh TR, Chen X, Thakkar H, Firnin J, Srivastava RK. The sequential treatment with ionizing radiation followed by TRAIL/Apo-2L reduces tumor growth and induces apoptosis of breast tumor xenografts in nude mice. Int J Oncol 2004;24:1133–1140.

    PubMed  CAS  Google Scholar 

  233. Shankar S, Singh TR, Srivastava RK. Ionizing radiation enhances the therapeutic potential of TRAIL in prostate cancer in vitro and in vivo: Intracellular mechanisms. Prostate 2004;61:35–49.

    Article  PubMed  CAS  Google Scholar 

  234. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S. Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 1999;59:734–741.

    PubMed  CAS  Google Scholar 

  235. Nagane M, Pan G, Weddle JJ, Dixit VM, Cavenee WK, Huang HJ. Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res 2000;60:847–853.

    PubMed  CAS  Google Scholar 

  236. Ravi R, Bedi GC, Engstrom LW, et al. Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB. Nat Cell Biol 2001;3:409–416.

    Article  PubMed  CAS  Google Scholar 

  237. Chen X, Kandasamy K, Srivastava RK. Differential roles of RelA (p65) and c-Rel subunits of nuclear factor kappa B in tumor necrosis factor-related apoptosis-inducing ligand signaling. Cancer Res 2003;63:1059–1066.

    PubMed  CAS  Google Scholar 

  238. Shankar S, Chen X, Srivastava RK. Effects of sequential treatments with chemotherapeutic drugs followed by TRAIL on prostate cancer in vitro and in vivo. Prostate 2005;62: 165–186.

    Article  PubMed  CAS  Google Scholar 

  239. Chinnaiyan AM, Prasad U, Shankar S. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 2000;97:1754–1759.

    Article  PubMed  CAS  Google Scholar 

  240. Kim JH, Shin JH, Kim IH. Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor. Int J Radiat Oncol Biol Phys 2004;59:1174–1180.

    Article  PubMed  CAS  Google Scholar 

  241. Camphausen K, Burgan W, Cerra M, et al. Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res 2004;64:316–321.

    Article  PubMed  CAS  Google Scholar 

  242. Camphausen K, Cerna D, Scott T, et al. Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int J Cancer 2005;114:380–386.

    Article  PubMed  CAS  Google Scholar 

  243. Bevins RL, Zimmer SG. It’s about time: scheduling alters effect of histone deacetylase inhibitors on camptothecin-treated cells. Cancer Res 2005;65:6957–6966.

    Article  PubMed  CAS  Google Scholar 

  244. Chen WY, Bailey EC, McCune SL, Dong JY, Townes TM. Reactivation of silenced, virally transduced genes by inhibitors of histone deacetylase. Proc Natl Acad Sci USA 1997;94:5798–5803.

    Article  PubMed  CAS  Google Scholar 

  245. Baylin S, Bestor TH. Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell 2002;1:299–305.

    Article  PubMed  CAS  Google Scholar 

  246. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 2001;10:687–692.

    Article  PubMed  CAS  Google Scholar 

  247. Zhu WG, Lakshmanan RR, Beal MD, Otterson GA. DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors. Cancer Res 2001;61:1327–1333.

    PubMed  CAS  Google Scholar 

  248. Chobanian NH, Greenberg VL, Gass JM, et al. Histone deacetylase inhibitors enhance paclitaxelinduced cell death in ovarian cancer cell lines independent of p53 status. Anticancer Res 2004; 24:539–545.

    PubMed  CAS  Google Scholar 

  249. Blagosklonny MV, Robey R, Bates S, Fojo T. Pretreatment with DNA-damaging agents permits selective killing of checkpoint-deficient cells by microtubule-active drugs. J Clin Invest 2000;105:533–539.

    Article  PubMed  CAS  Google Scholar 

  250. Gozzini A, Santini V. Butyrates and decitabine cooperate to induce histone acetylation and granulocytic maturation of t(8;21) acute myeloid leukemia blasts. Ann Hematol 2005;84(Suppl 13):1–7.

    Google Scholar 

  251. Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E. Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP, and PC-3 prostate epithelial cells. Carcinogenesis 2006;27(4):811–819.

    Article  PubMed  CAS  Google Scholar 

  252. Kelly WK, O’Connor OA, Krug LM, et al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 2005;23:3923–3931.

    Article  PubMed  CAS  Google Scholar 

  253. Hess-Stumpp H. Histone deacetylase inhibitors and cancer: from cell biology to the clinic. Eur J Cell Biol 2005;84:109–121.

    Article  PubMed  CAS  Google Scholar 

  254. Blanchard F, Chipoy C. Histone deacetylase inhibitors: new drugs for the treatment of inflammatory diseases? Drug Discov Today 2005;10:197–204.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Shankar, S., Srivastava, R.K. (2007). Clinical Significance of Histone Deacetylase Inhibitors in Cancer. In: Srivastava, R. (eds) Apoptosis, Cell Signaling, and Human Diseases. Humana Press. https://doi.org/10.1007/978-1-59745-200-7_15

Download citation

Publish with us

Policies and ethics