Skip to main content

Summary

Ethanol, commonly also referred to as alcohol, is widely used as well as abused, and measurement of alcohol is a common test in clinical toxicology and forensic laboratories. Although blood alcohol measurement is most commonly used, alcohol can also be measured in breath, urine, saliva and vitreous humor. Whole blood alcohol levels are lower than serum alcohol levels, and the value depends on the hematocrit. Although enzymatic assays based on capability of alcohol dehydrogenase to convert alcohol to acetaldehyde is widely used for rapid determination of serum or plasma alcohol concentrations, values may be elevated in postmortem serum as well as in patients with highly elevated lactate and lactate dehydrogenase level in blood. Gas chromatographic methods widely used for determination of forensic alcohol are considered as the reference method, and there are also few reports of using gas chromatography combined with mass spectrometry for determination of alcohol concentrations in biological matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freeza M, diPadova C, Pozzato G, Terpin M, Baraona E, Lieber CS. Higher blood alcohol levels in women: The role of decreased alcohol dehydrogenase activity and first pass metabolism. N Engl J Med 1990;322:95–99.

    Article  Google Scholar 

  2. Watson WA, Litovitz TL, Klein-Schwartz W, et al. 2002: Annual report of the American association of poison control centers toxic exposure surveillance system. Am J Emerg Med 2003;21:353–421.

    Article  Google Scholar 

  3. Jacobson D, McMartin KE. Methanol and ethylene glycol poisonings. Mechanism of toxicity, clinical course, diagnosis and treatment. Med Toxicol 1986;1:309–334.

    Google Scholar 

  4. Warden CR. Alcohols. In: Emergency Medicine. Abhababian RV, ed. The Core Curriculum. Philadelphia: Lippincott-Raven, 1998:1021–1023.

    Google Scholar 

  5. Winek CL, Carfagna M. Comparison of plasma, serum, and whole blood ethanol concentrations. J Anal Toxicol 1987;11:267–268.

    PubMed  CAS  Google Scholar 

  6. Winek CL, Paul LJ. Effect of short term storage conditions on alcohol concentrations in blood from living human subjects. Clin Chem 1983;29:1959–1983.

    PubMed  CAS  Google Scholar 

  7. Jones AW. Medicolegal alcohol determinations – breath- or blood- alcohol concentrations? Forensic Sci Rev 2000;12:23–47.

    Google Scholar 

  8. Mason MF, Dubowski KM. Breath as a specimen for analysis for ethanol and other low molecular weight alcohols. In: Medicolegal Aspects of Alcohols. Garriott JC, ed. Tucson, AZ: Lawyers & Judges Publishing Co., 1996: pp. 171–180.

    Google Scholar 

  9. Kwong TC, Jenny RW, Jortnai SA, Pinder RD. Clinical breathe alcohol testing. Proposed quality assurance guidelines. Washington DC; American Association for Clinical Chemistry TDM Toxicol Division, 2000.

    Google Scholar 

  10. Jones AW. Pharmacokinetics of ethanol in saliva: comparison with blood and breath alcohol profiles, subjective feelings of intoxication, and diminished performance. Clin Chem 1993;39:1837–1844.

    PubMed  CAS  Google Scholar 

  11. Caplan YH. Blood, urine, and other fluid and tissue specimens for alcohol analyses. In: Medicolegal Aspects of Alcohols. Garriott JC, ed. Tucson, AZ: Lawyers & Judges Publishing Co., 1996: pp. 137–150.

    Google Scholar 

  12. Coe JL. Postmortem chemistry update. Emphasis on forensic application. Am J Forensic Med Pathol 1993;14:91–117.

    Article  PubMed  CAS  Google Scholar 

  13. Kugelberg FC, Jones AW. Interpreting results of ethanol analysis in postmortem specimens: a review of the literature. Forensic Sci Intl 2006; (E-Pub ahead of print).

    Google Scholar 

  14. Chang J, Kollman SE. The effect of temperature on the formation of ethanol by Candida albicans in blood. J Forensic Sci 1989;34:105–109.

    PubMed  CAS  Google Scholar 

  15. O’Neal CL, Poklis A. Postmortem production of ethanol and factors that influence interpretation: a critical review. Am J Forensic Med Pathol 1996;17:8–20.

    Article  PubMed  CAS  Google Scholar 

  16. Hansson P, Varga A, Krantz P, Alling C. Phosphatidylethanol in post-mortem blood as a marker of previous heavy drinking. Int J Legal Med 2001;115:158–161.

    Article  PubMed  CAS  Google Scholar 

  17. Refaai MA, Nguyen PN, Steffensen TS, Evans RJ, Cluette-Brown JE, Laposata M. Liver and adipose tissue fatty acid ethyl esters obtained at autopsy are postmortem markers for premortem ethanol intake. Clin Chem 2002;48:77–83.

    PubMed  CAS  Google Scholar 

  18. Kulig CC, Beresford TP, Everson GT. Rapid, accurate, and sensitive fatty acid ethyl ester determination by gas chromatography-mass spectrometry. J Lab Clin Med 2006;147:133–138.

    Article  PubMed  CAS  Google Scholar 

  19. Helander A, Beck O, Jones AW. Distinguishing ingested ethanol from microbial formation by analysis of urinary 5-hydroxytryptophol and 5-hydroxyindoleacetic acid. J Forensic Sci 1995;40:95–98.

    PubMed  CAS  Google Scholar 

  20. Johnson RD, Lewis RJ, Canfield DV, Dubowski KM, Blank CL. Utilizing the urinary 5-HTOL/5-HIAA ratio to determine ethanol origin in civil aviation accident victims. J Forensic Sci 2005;50:670–675.

    PubMed  CAS  Google Scholar 

  21. Statheropoulos M, Spiliopoulou C, Agapiou A. A study of volatile organic compounds evolved from the decaying human body. Forensic Sci Int 2005;153:147–155.

    Article  PubMed  CAS  Google Scholar 

  22. Lough PS, Fehn R. Efficacy of 1% sodium fluoride as a preservative in urine samples containing glucose and Candida albicans. J Forensic Sci 1993;38:266–271.

    PubMed  CAS  Google Scholar 

  23. Kilian M, Bulow P. Rapid identification of Enterobacteriaceae. II. Use of a beta-glucuronidase detecting agar medium (PGUA agar) for the identification of E. coli in primary cultures of urine samples. Acta Pathol Microbiol Scand [B] 1979;87:271–276.

    CAS  Google Scholar 

  24. Bhagat CI, Beilby JP, Garcia-Webb P, Dusci LJ. Errors in estimating ethanol concentration in plasma by using the “osmolal gap”. Clin Chem 1985;31:647–648.

    PubMed  CAS  Google Scholar 

  25. Wu AHB, Broussard LA, Hoffman RS, et al. National academy of clinical biochemistry laboratory medicine practice guidelines: recommendation for the use of laboratory tests to support the impaired and overdosed patient from the emergency department. Clin Chem 2003;49:357–379.

    Article  PubMed  CAS  Google Scholar 

  26. Yost DA, Boehnlein L, Schaffer M. A novel assay to determine ethanol in whole blood on the Abbott TDX. Clin Chem 1984;30:1029A.

    Google Scholar 

  27. Cary PL, Whitter PD, Johnson CA. Abbott radiative energy attenuation method for quantifying ethanol evaluated and compared with gas-liquid chromatography and the Du Pont aca. Clin Chem 1984;30:1867–1870.

    PubMed  CAS  Google Scholar 

  28. Currier GW, Trenton AJ, Walsh PG. Innovations: emergency psychiatry: relative accuracy of breath and serum alcohol readings in the psychiatric emergency service. Psychiatr Serv 2006;57:34–36.

    Article  PubMed  Google Scholar 

  29. Jones AW, Pounder DJ. Measuring blood alcohol concentrations for clinical and forensic purposes. In: Drug Abuse Handbook. Karch SB, ed. Boca Raton, FL: CRC Press, 1998.

    Google Scholar 

  30. Williams RH, Shah SM, Maggiore JA, Erickson TB. Simultaneous detection and quantitation of diethylene glycol, ethylene glycol, and the toxic alcohols in serum using capillary column gas chromatography. J Anal Toxicol 2000;24:621–626.

    PubMed  CAS  Google Scholar 

  31. Dean RA, Thomasson HR, Dumaual N, et al. Simultaneous measurement of ethanol and ethyl d5-alcohol by stable isotope gas chromatography-mass spectrometry. Clin Chem 1996;42:367–342.

    PubMed  CAS  Google Scholar 

  32. Wasfi IA, Al-Awadhi AH, Al-Hatali ZN, et al. Rapid and selective static headspace gas chromatography-mass spectrometric method for the analysis of ethanol and abused inhalants in blood. J Chromatogr B Analyt Technol Biomed Life Sci 2004;799:331–336.

    Article  PubMed  CAS  Google Scholar 

  33. Maeda H, Zhu BL, Ishikawa T, et al. Evaluation of postmortem ethanol concentrations in pericardial fluid and bone marrow aspirate. Forensic Sci Int 2006;161:141–143.

    Article  PubMed  CAS  Google Scholar 

  34. Peek GJ, Marsh A, Keating J, Ward RJ, Peters TJ. The effects of swabbing the skin on apparent blood ethanol concentration. Alcohol Alcoholism 1990;25:639–640.

    CAS  Google Scholar 

  35. Winek CL, Wahba WW. A response to “serum ethanol determination: comparison of lactate and lactate dehydrogenase interference in three enzymatic assays. J Anal Toxicol 1996;20:211.

    PubMed  CAS  Google Scholar 

  36. Nine JS, Moraca M, Virji MA, Rao KN. Serum-ethanol determination: comparison of lactate and lactate dehydrogenase interference in three enzymatic assays. J Anal Toxicol 1995;19:192–196.

    PubMed  CAS  Google Scholar 

  37. Dunne JR, Tracy JK, Scalea TM, Napolitano L. Lactate and base deficit in trauma: Does alcohol or drug use impair predictive accuracy? J Trauma 2005;58:959–966.

    Article  PubMed  CAS  Google Scholar 

  38. Winek CL, Wahba WW, Windisch R, Winek CL. Serum alcohol concentrations in trauma patients determined by immunoassays versus gas chromatography. Forensic Sci Int 2004;139:1–3.

    Article  PubMed  CAS  Google Scholar 

  39. Thompson WC, Malhotra D, Schammel DP, et al. False-positive ethanol in clinical and postmortem sera by enzymatic assay: elimination of interference by measuring alcohol in protein-free ultrafiltrate. Clin Chem 1994;40:1594–1595.

    PubMed  CAS  Google Scholar 

  40. Gadsden RH, Taylor EH, Steindel SJ, et al. Ethanol in biological fluids by enzymatic analysis. In: Selected Methods of Emergency Toxicology. Frings CS, Faulkner WR, eds. Vol. 11. Selected Methods of Clinical Chemistry, Washington DC, AACC press, 1986, pp. 63–65.

    Google Scholar 

  41. Dahl H, Stephanson N, Beck O, Helander A. Comparison of urinary excretion characteristics of ethanol and ethyl glucuronide. J Anal Toxicol 2002;26:201–204.

    PubMed  CAS  Google Scholar 

  42. Helander A, Beck O. Mass spectrometric identification of ethyl sulfate as an ethanol metabolite in humans. Clin Chem 2004;50:936–937.

    Article  PubMed  CAS  Google Scholar 

  43. Ronald A. The etiology of urinary tract infection: traditional and emerging pathogens. Am J Med 2002;113 (Suppl 1A):14S–19S.

    Article  PubMed  Google Scholar 

  44. Helander A, Dahl H. Urinary tract infection: a risk factor for false-negative urinary ethyl glucuronide but not ethyl sulfate in the detection of recent alcohol consumption. Clin Chem 2005;51:1728–1730.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc

About this chapter

Cite this chapter

Kazmierczak, S.C., Azzazy, H.M. (2008). Alcohol Testing. In: Dasgupta, A. (eds) Handbook of Drug Monitoring Methods. Humana Press. https://doi.org/10.1007/978-1-59745-031-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-031-7_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-780-8

  • Online ISBN: 978-1-59745-031-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics