Skip to main content

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

There has been a recent resurgence of studies on the relation between ion fluxes and cell proliferation. It is now clear that the activity and the expression of several classes of ion channels not only depend on the proliferative or quiescent state of cells, but in turn, regulate these states. Thus, ion channel function is not limited to excitability and ion homeostasis, but is intimately linked to the regulation of all aspects of cellular life, from fertilization to proliferation, from wound healing to the establishment of embryonic axes. Channel activity affects these processes by participating in the control of cell functions as diverse as migration, proliferation, apoptosis, neurite extension, and pathfinding. The precise mechanisms of these actions are still largely unknown, but the convergence of modern cell physiology with the application of molecular biology to mammalian cells appears very promising. We briefly review some of the recent advances in this field, from the standpoint of the cell cycle. We summarize what is known on the relationship between ion channels and cell cycle in normal and neoplastic cells, and focus on some regulatory pathways which modulate the transition between proliferative and nonproliferative states, with special attention to those triggered by integrin-mediated cell adhesion to the extracellular matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubois JM, Rouzaire-Dubois B. Role of potassium channels in mitogenesis. Prog Biophys Mol Biol 1993;59:1–21.

    Article  PubMed  CAS  Google Scholar 

  2. Wonderlin WF, Strobl JS. Potassium channels and G1 progression. J Memb Biol 1996;154:91–107.

    Article  CAS  Google Scholar 

  3. Wang Z. Roles of K+ channels in regulating tumour cell proliferation and apoptosis. Pflugers Archiv. 2004;448:274–286.

    Article  PubMed  CAS  Google Scholar 

  4. Pardo LA. Voltage-gated potassium channels in cell proliferation. Physiology 2004; 19:285–292.

    Article  PubMed  CAS  Google Scholar 

  5. Lepple-Wienhues A, Berweck S, Bohmig M, et al. K+ channels and the intracellular calcium signal in human melanoma cell proliferation. J Membr Biol 1996;151:146–157.

    Article  Google Scholar 

  6. Lee YS, Sayeed MM, Wurster RD. In vitro antitumor activity of cromakalim in human brain tumor cells. Pharmacology 1994;49:69–74.

    PubMed  CAS  Google Scholar 

  7. Malhi H, Irani AN, Rajvanshi P, et al. KATP channels regulate mitogenically induced proliferation in primary rat hepatocytes and human liver cell lines. Implications for liver growth control and potential therapeutic targeting. J Biol Chem 2000;275:26,050–26,057.

    Article  PubMed  CAS  Google Scholar 

  8. Huang MH, Wu SN, Chen CP, Shen AY. Inhibition of Ca2+-activated and voltage-dependent K+ currents by 2-mercaptophenyl-l, 4-naphtoquinone in pituitary GH3 cells: contribution to its antiproliferative effect. Life Sci 2002;70:1185–1203.

    Article  PubMed  CAS  Google Scholar 

  9. Liu X, Chang Y, Reinhart PH, Sontheimer H, Chang Y. Cloning and characterization of glioma BK, a novel BK channel isoform highly expressed in human glioma cells. J Neurosci 2002;22:1840–1849.

    PubMed  CAS  Google Scholar 

  10. Voets T, Szucs G, Droogmans G, Nilius B. Blockers of volume-activated Cl− currents inhibit endothelial cell proliferation. Pflugers Archiv 1995;431:132–134.

    Article  PubMed  CAS  Google Scholar 

  11. Schlichter LC, Sakellaropoulos G, Ballyk B, Pennefather PS, Phipps DJ. Properties of K+ and Cl− channels and their involvement in proliferation of rat microglial cells. Glia 1996;17:225–236.

    Article  PubMed  CAS  Google Scholar 

  12. Wondergem R, Gong W, Monen SH, et al. Blocking swelling-activated chloride currents inhibits mouse liver cell proliferation. J Physiol 2001;532:661–672.

    Article  PubMed  CAS  Google Scholar 

  13. Xiao GN, Guan YY, He H. Effects of Cl− channels blockers on endothelin-1-induced proliferation of rat vascular smooth muscle cells. Life Sci 2002;70:2233–2241.

    Article  PubMed  CAS  Google Scholar 

  14. Nilius B, Eggermont J, Voets T, Buyse G, Manolopoulos VG, Droogmans G. Properties of volume-regulated anion channels in mammalian cells. Prog Biophys Mol Biol 1997;68:69–119.

    Article  PubMed  CAS  Google Scholar 

  15. Bringmann A, Francke M, Pannicke T, et al. Role of glial K+ channels in ontogeny and gliosis: a hypothesis based upon studies on Muller cells. Glia 2000;29:35–44.

    Article  PubMed  CAS  Google Scholar 

  16. MacFarlane SN, Sontheimer H. Electrophysiological changes that accompany reactive gliosis in vitro. J Neurosci 1997;17:7316–7329.

    PubMed  CAS  Google Scholar 

  17. D’Ambrosio R, Maris DO, Grady MS, Winn HR, Janigro D. Impaired K+ homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. J Neurosci 1999;19:8152–8162.

    PubMed  CAS  Google Scholar 

  18. Schröder W, Hager G, Kouprijanova E, et al. Lesion-induced changes of electrophysiological properties in astrocytes of the rat dentate gyrus. Glia 1999;28:166–174.

    Article  PubMed  Google Scholar 

  19. Bordey A, Lyons SA, Hablitz JJ, Sontheimer H. Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia. J Neurophysiol 2001;85:1719–1731.

    PubMed  CAS  Google Scholar 

  20. Hotary KB, Robinson KR. Endogenous electrical currents and voltage gradients in Xenopus embryos and the consequences of their disruption. Dev Biol 1994;166:279, 800.

    Article  Google Scholar 

  21. Shi R, Borgens RB. Three-dimensional gradients of voltage during development of nervous system as invisible coordinates for the establishment of embryonic patterns. Dev Dyn 1995;202:101–114.

    PubMed  CAS  Google Scholar 

  22. Borgens RB, Shi R. Uncoupling histogenesis from morphogenesis in the vertebrate by collapse of the transneural tube potential. Dev Dyn 1995;203:456–467.

    PubMed  CAS  Google Scholar 

  23. Song B, Zhao M, Forrester JV, McCaig CD. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci USA 2002;99:13577–13582.

    Article  PubMed  CAS  Google Scholar 

  24. McCaig CD, Rajnicek AM, Song B, Zhao M. Has electrical growth cone guidance found its potential. Trends Neurosci 2002;25:354–359.

    Article  PubMed  CAS  Google Scholar 

  25. Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol 2003;58:1–26.

    Article  PubMed  Google Scholar 

  26. Binggeli R, Weinstein RC. Membrane potentials and sodium channels: hypotheses for growth regulation and cancer formation based on changes in sodium channels and gap junctions. J Theor Biol 1986;123:377–401.

    Article  PubMed  CAS  Google Scholar 

  27. Day ML, Pickering SJ, Johnson MH, Cook DI. cell cycle control of a large conductance K+ channel in mouse early embryos. Nature 1993;365:560–562.

    Article  PubMed  CAS  Google Scholar 

  28. Day ML, Johnson MH, Cook DI. A cytoplasmic cell cycle controls the activity of a K+ channel in pre-implantation mouse embryos. EMBO J 1998;17:1952–1960.

    Article  PubMed  CAS  Google Scholar 

  29. Takahashi A, Yamaguchi H, Miyamoto H. Change in K+ current of HeLa cells with progression of the cell cycle studied by patch-clamp technique. Am J Physiol 1993;265:C328–C336.

    PubMed  CAS  Google Scholar 

  30. Chittajallu R, Chen Y, Wang H, et al. Regulation of Kvl subunit expression in oligodendrocyte progenitor cells and their role in G1/S phase progression of the cell cycle. Proc Natl Acad Sci USA 2002;99:2350–2355.

    Article  PubMed  CAS  Google Scholar 

  31. Warmke JW, Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA 1994;91:3438–3442.

    Article  PubMed  CAS  Google Scholar 

  32. Ludwig J, Terlau H, Wunder F, et al. Functional expression of a rat homologue of the voltage-gated ether-a-gó-gó potassium channel reveals differences in selectivity and activation kinetics between the Drosophila channel and its mammalian counterpart. EMBO J 1994;13:4451–4458.

    PubMed  CAS  Google Scholar 

  33. Brüggemann A, Stühmer W, Pardo LA. Mitosis-promoting factor-mediated suppression of a cloned delayed rectifier potassium channel expressed in Xenopus oocytes. Proc Natl Acad Sci USA 1997;94:537–542.

    Article  PubMed  Google Scholar 

  34. Pardo LA, Bruggemann A, Camacho J, Stiihmer W. Cell cycle-related changes in the conducting properties of r-eag K+ channels. J Cell Biol 1998;143:767–775.

    Article  PubMed  CAS  Google Scholar 

  35. Smith PL, Baukrowitz T, Yellen G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature 1996;379:833–836.

    Article  PubMed  CAS  Google Scholar 

  36. Spector PS, Curran ME, Zou A, Keating MT, Sanguinetti MC. Fast inactivation causes rectification of the Ikr channel. J Gen Physiol 1996;107:611–619.

    Article  PubMed  CAS  Google Scholar 

  37. Shi W, Wymore RS, Wang HS, et al. Identification of two nervous system-specific members of the erg potassium channel gene family. J Neurosci 1997; 17:9423–9432.

    PubMed  CAS  Google Scholar 

  38. Arcangeli A, Bianchi L, Becchetti A, et al. A novel inward-rectifying K+ current with a cell cycle dependence governs the resting potential of mammalian neuroblastoma cells. J Physiol 1995;489:455–471.

    PubMed  CAS  Google Scholar 

  39. Bianchi L, Wible B, Arcangeli A, et al. Herg encodes a K+ current highly conserved in tumors of different histogenesis: a selective advantage for cancer cells? Cancer Res 1998;58:815–822.

    PubMed  CAS  Google Scholar 

  40. Crociani O, Guasti L, Balzi E, et al. Cell cycle-dependent expression of HERG1 and HERG1B iso-forms in tumor cells. J Biol Chem 2003;278:2947–2955.

    Article  PubMed  CAS  Google Scholar 

  41. Block ML, Moody WJ. A voltage-dependent chloride current linked to the cell cycle in Ascidian embryos. Science 1990;247:1090–1092.

    Article  PubMed  CAS  Google Scholar 

  42. Bubien JK, Kirk KL, Rado TA, Frizzell RA. Cell cycle dependence of chloride permeability in normal and cystic fibrosis lymphocytes. Science 1990;248:1416–1419.

    Article  PubMed  CAS  Google Scholar 

  43. Chen L, Wang L, Zhu L, et al. Cell cycle dependent expression of volume-activated chloride currents in nasopharingeal carcinoma cells. Am J Physiol 2002;283:C1313–C1323.

    CAS  Google Scholar 

  44. Nilius B, Schwarz G, Droogmans G. Control of intracellular calcium by membrane potential in human melanoma cells. Am J Physiol 1993;265:C1501–C1510.

    PubMed  CAS  Google Scholar 

  45. Whitaker M, Larman MG. Calcium and mitosis. Semin Cell Dev Biol 2001;12:53–58.

    Article  PubMed  CAS  Google Scholar 

  46. Kahl CR, Means AR. Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 2003;24:719–736.

    Article  PubMed  CAS  Google Scholar 

  47. Patel R, Holt M, Philipova R, et al. Calcium/calmodulin-dependent phosphorilation and activation of human cdc25-C at the G2/M phase transition in HeLa cells. J Biol Chem 1999;274:7958–7968.

    Article  PubMed  CAS  Google Scholar 

  48. Welsh MJ, Dedman JR, Brinkley BR, Means AR. Calcium-dependent regulator protein: localization in mitotic apparatus of eukaryotic cells. Proc Natl Acad Sci USA 1978;75:1867–1871.

    Article  PubMed  CAS  Google Scholar 

  49. Welsh MJ, Dedman JR, Brinkley BR, Means AR. Tubulin and calmodulin. Effects of microtubule and microfilament inhibitors on localization in the mitotic apparatus. J Cell Biol 1979;81:624–634.

    Article  PubMed  CAS  Google Scholar 

  50. Sasaki Y, Hidaka H Calmodulin and cell proliferation. Biochem Biophys Res Commun 1982;104:451–456.

    Article  PubMed  CAS  Google Scholar 

  51. Rasmussen CD, Means AR. Calmodulin is required for cell cycle progression during G1 and mitosis. EMBO J 1989;8:73–82.

    PubMed  CAS  Google Scholar 

  52. Török K, Wilding M, Groigno L, Patel R, Whitaker M. Imaging the spatial dynamics of calmodulin activation during mitosis. Curr Biol 1998;8:692–699.

    Article  PubMed  Google Scholar 

  53. Li C-J, Heim R, Lu P, Pu Y, Tsien RY, Chang DC. Dynamic redistribution of calmodulin in HeLa cells during cell division as revealed by a GFP-calmodulin fusion protein technique. J Cell Sci 1999;112:1567–1577.

    PubMed  CAS  Google Scholar 

  54. Baitinger C, Alderton J, Poenie M, Schulman H, Steinhardt RA. Multifunctional Ca2+/calmodulin-dependent kinase is necessary for nuclear envelope breakdown. J Cell Biol 1990;111:1763–1773.

    Article  PubMed  CAS  Google Scholar 

  55. Waldmann R, Hanson PI, Schulman H. Multifunctional Ca2+/calmodulin-dependent protein kinase made Ca2+ independent for functional studies. Biochemistry 1990;29:1679–1684.

    Article  PubMed  CAS  Google Scholar 

  56. Poenie M, Alderton JM, Steinhardt RA, Tsien RY. Calcium rises abruptly and briefly throughout the cell at the onset of anaphase. Science 1986;233:886–889.

    Article  PubMed  CAS  Google Scholar 

  57. Kao JP, Alderton JM, Tsien RY, Steinhardt RA. Active involvement of Ca2+ in mitotic progression of Swiss 3T3 fibroblasts. J Cell Biol 1990;111:183–196.

    Article  PubMed  CAS  Google Scholar 

  58. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1:11–21.

    Article  PubMed  CAS  Google Scholar 

  59. Lewis RS, Cahalan MD. Potassium and calcium channels in lymphocytes. Annu Rev Immunol 1995;13:623–653.

    Article  PubMed  CAS  Google Scholar 

  60. Lovisolo D, Distasi C, Antoniotti S, Munaron L. Mitogens and calcium channels. News Physiol Sci 1997;12:279–285.

    CAS  Google Scholar 

  61. Munaron L. Calcium signalling and control of cell proliferation by tyrosine kinase receptors. Int J Mol Med 2002;10:671–676.

    PubMed  CAS  Google Scholar 

  62. Kuga T, Kobayashi S, Hirakawa Y, Kanaide H, Takeshita A. Cell cycle-dependent expression of L-and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture. Circ Res 1996; 79:14–19.

    PubMed  CAS  Google Scholar 

  63. Clapham DE, Runnels LW, Strubing C. The TRP ion channel family. Nat Rev Neurosci 2001;2:387–396.

    Article  PubMed  CAS  Google Scholar 

  64. Inoue R, Hanano T, Shi J, Mori Y, Ito Y. Transient receptor potential protein as a novel non-voltage-gated Ca2+ entry channel involved in diverse pathophysiological functions. J Pharmacol Sci 2003;91:271–276.

    Article  PubMed  CAS  Google Scholar 

  65. Nilius B. Chloride channels go cell cycling. J Physiol 2001;532:581.

    Article  PubMed  CAS  Google Scholar 

  66. Ismailov II, Benos DJ. Effects of phosphorylation on ion channel function. Kidney Int 1995;48:1167–1179.

    Article  PubMed  CAS  Google Scholar 

  67. Davis MJ, Wu X, Nurkiewicz TR, et al. Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol 2001;281:H1835–H1862.

    CAS  Google Scholar 

  68. Baldelli P, Magnelli V, Carbone E. Selective up-regulation of P-and R-type Ca2+ channels in rat embryo motoneurons by BDNF. Eur J Neurosci 1999; 11:1127–1133.

    Article  PubMed  CAS  Google Scholar 

  69. Black MJ, Woo Y, Rane SG. Calcium channel upregulation in response to activation of neurotrophin and surrogate neurotrophin receptor tyrosine kinases. J Neurosci Res 2003;74:23–36.

    Article  PubMed  CAS  Google Scholar 

  70. Bence-Hanulec KK, Marshall J, Blair LAC. Potentiation of neuronal L Calcium channels by IGF-1 requires phosphorylation of the α1 subunit on a specific tyrosine residue. Neuron 2000;27:121–131.

    Article  PubMed  CAS  Google Scholar 

  71. Mergler S, Dannowski H, Bednarz J, Engelmann K, Hartmann C, Pleyer U. Calcium influx induced by activation of receptor tyrosine kinases in SV40-transfected human corneal endothelial cells. Exp Eye Res 2003;77:485–495.

    Article  PubMed  CAS  Google Scholar 

  72. Abdullaev IF, Sabirov RZ, Okada Y. Upregulation of swelling-activated Cl-channel sensitivity to cell volume by activation of EGF receptors in murine mammary cells. J Physiol 2003;549(3):749–758.

    Article  PubMed  CAS  Google Scholar 

  73. Szabo I, Gulbins E, Apfel H, et al. Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J Biol Chem 1996;34:20,465–20,469.

    Google Scholar 

  74. Bowlby MR, Fadool DA, Holmes TC, Levitan IB. Modulation of the Kv 1.3 potassium channel by receptor tyrosine kinases. J Gen Physiol 1997;110:601–610.

    Article  PubMed  CAS  Google Scholar 

  75. Wischmeyer E, Doring F, Karschin A. Acute suppression of inwardly rectifying Kir 2.1 channels by direct tyrosine kinase phosphorylation. J Biol Chem 1998;273:34,063–34,068.

    Article  PubMed  CAS  Google Scholar 

  76. Sobko A, Peretz A, Attali B. Constitutive activation of delayed-rectifier potassium channels by a Src family tyrosine kinase in Schwann cells. EMBO J 1998; 17:4723–4734.

    Article  PubMed  CAS  Google Scholar 

  77. Wang L, Xu B, White RE, Lu L. Growth factor-mediated K+ channel activity associated with human myeloblastic ML-1 cell proliferation. Am J Physiol 1997;273:C1657–C1665.

    PubMed  CAS  Google Scholar 

  78. Xu D, Wang L, Dai W, Lu L. A requirement for K+-channel activity in growth factor-mediated extracellular signal-regulated kinase activation in human myeloblastic leukemia ML-1 cells. Blood 1999;94:139–145.

    PubMed  CAS  Google Scholar 

  79. Wang H, Zhang Y, Cao L, et al. Herg K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res 2003;62:4843–4848.

    Google Scholar 

  80. Pillozzi S, Brizzi MF, Balzi M, et al. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia 2002;16:1791–1798.

    Article  PubMed  CAS  Google Scholar 

  81. Cayabyab FS, Schlichter LC. Regulation of an ERG K+ current by Src tyrosine kinase. J Biol Chem 2002;277:13,673–13,681.

    Article  PubMed  CAS  Google Scholar 

  82. Juliano RL. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 2002;42:283–323.

    Article  PubMed  CAS  Google Scholar 

  83. Giancotti FG, Tarone G. Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu Rev Cell Dev Biol 2003;19:173–206.

    Article  PubMed  CAS  Google Scholar 

  84. Brown EJ. Integrin-associated proteins. Curr Opin Cell Biol 2002;14:603–607.

    Article  PubMed  CAS  Google Scholar 

  85. Baron W, Decker L, Colognato H, ffrench-Constant C. Regulation of integrin growth factor interactions in oligodendrocytes by lipid raft microdomains. Curr Biol 2003;13:151–155.

    Article  PubMed  CAS  Google Scholar 

  86. Lai EC. Lipid rafts make for slippery platforms. J Cell Biol 2003;162:365–370.

    Article  PubMed  CAS  Google Scholar 

  87. Davis MJ, Wu X, Nurkiewicz TR, et al. Regulation of ion channels by integrins. Cell Biochem Biophys 2002;36:41–66.

    Article  PubMed  CAS  Google Scholar 

  88. Arcangeli A, Becchetti A, Mannini A, et al. Integrin-mediated neurite outgrowth in neuroblastoma cells depends on the activation of potassium channels. J Cell Biol 1993;122:1131–1143.

    Article  PubMed  CAS  Google Scholar 

  89. Hofmann G, Bernabei PA, Crociani O, et al. HERG K+ channels activation during beta(l) integrin-mediated adhesion to fibronectin induces an up-regulation of alpha(v)beta(3) integrin in the pre-osteoclastic leukemia cell line FLG 29.1. J Biol Chem 2001;276:4923–4931.

    Article  PubMed  CAS  Google Scholar 

  90. Menegazzi R, Busetto S, Decleva E, Cramer R, Dri P, Patriarca P. Triggering of chloride ion efflux from human neutrophils as a novel function of leukocyte beta 2 integrins: relationship with spreading and activation of the respiratory burst. J Immunol 1999;162:423–434.

    PubMed  CAS  Google Scholar 

  91. Bianchi L, Arcangeli A, Bartolini P, Mugnai G, Wanke E, Olivotto M. An inward rectifier K+ current modulates in neuroblastoma cells the tyrosine phosphorylation of the ppl25FAK and associated proteins: role in neuritogenesis. Biochem Biophys Res Commun 1995;210:823–829.

    Article  PubMed  CAS  Google Scholar 

  92. Levite M, Cahalon L, Peretz A, et al. Extracellular K+ and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kvl.3 channels and betal integrins. J Exp Med 2000;191:1167–1176.

    Article  PubMed  CAS  Google Scholar 

  93. Artym VV, Petty HR. Molecular proximity of Kvl.3 voltage-gated potassium channels and beta(l)-integrins on the plasma membrane of melanoma cells: effects of cell adherence and channel blockers. J Gen Physiol 2002; 120:29–37.

    Article  PubMed  CAS  Google Scholar 

  94. McPhee JC, Dang YL, Davidson N, Lester HA. Evidence for a functional interaction between integrins and G protein-activated inward rectifier K+ channels. J Biol Chem 1998;273:34,696–34,702.

    Article  PubMed  CAS  Google Scholar 

  95. Abdel-Ghany M, Cheng H-C, Elble RC, Lin H, DiBiasio J, Pauli BU. The interating binding domains of the β4 integrin and calcium-activated chloride channels (CLCAs) in metastasis. J Biol Chem 2003;278:49,406–49,416.

    Article  PubMed  CAS  Google Scholar 

  96. Cherubini A, Pillozzi S, Hofmann G, et al. HERG K+ channels and betal integrins interact through the assembly of a macromolecular complex. Ann NY Acad Sci 2002;973:559–561.

    PubMed  CAS  Google Scholar 

  97. Cherubini A, Hofmann G, Pillozzi S, et al. hERGl Channels are physically linked to betal integrins and modulate adhesion-dependent signalling. Mol Biol Cell 2005; 16:2972–2983.

    Article  PubMed  CAS  Google Scholar 

  98. Martens JR, O’Connell K, Tamkun M. Targeting of ion channels to membrane microdomains: localization of KV channels to lipid rafts. Trends Pharmacol Sci 2004;25:16–21.

    Article  PubMed  CAS  Google Scholar 

  99. O’Connell KM, Martens JR, Tamkun MM. Localization of ion channels to lipid Raft domains within the cardiovascular system. Trends Cardiovasc Med 2004;14:37–42.

    Article  PubMed  CAS  Google Scholar 

  100. Brady JD, Rich TC, Le X, et al. Functional role of lipid raft microdomains in cyclic nucleotide-gated channel activation. Mol Pharmacol 2004;65:503–511.

    Article  PubMed  CAS  Google Scholar 

  101. Bubien JK, Keeton DA, Fuller CM, et al. Malignant human gliomas express an amiloride-sensitive Na+ conductance. Am J Physiol 1999;276:C1405–C1410.

    PubMed  CAS  Google Scholar 

  102. Pardo LA, del Camino D, Sanchez A, et al. Oncogenic potential of EAG K+ channels. EMBO J 1999;18:5540–5547.

    Article  PubMed  CAS  Google Scholar 

  103. Yu SP. Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 2003;70:363–386.

    Article  PubMed  CAS  Google Scholar 

  104. Fraser SP, Salvador V, Manning EA, et al. Contribution of functional voltage-gated Na+ channel expression to cell behaviours involved in the metastatic cascade in rat prostate cancer: I. Leteral motility. J Cell Physiol 2003; 195:479–487.

    Article  PubMed  CAS  Google Scholar 

  105. Lastraioli E, Guasti L, Crociani O, et al. Hergl gene and HERG1 protein are overexpressed in colorectal cancers and regulate cell invasion of tumor cells. Cancer Res 2004;64:606–611.

    Article  PubMed  CAS  Google Scholar 

  106. Grimes JA, Djamgoz MBA. Electrophysiological characterization of voltage-gated Na+ current expressed in highly metastatic Mat-LyLu cell line of rat prostate cancer. J Cell Physiol 1995;175:50–58.

    Article  Google Scholar 

  107. Bordey A, Sontheimer H. Electrophysiological properties of human astrocytic tumor cells in situ: enigma of spiking glial cells. J Neurophysiol 1998;79:2782–2793.

    PubMed  CAS  Google Scholar 

  108. Labrakakis C, Patt S, Hartmann J, Kettenmann H. Glutamate receptor activation can trigger electrical activity in human glioma cells. Eur J Neurosci 1998;10:2153–2162.

    Article  PubMed  CAS  Google Scholar 

  109. Gritti A, Rosati B, Lecchi M, Vescovi AL, Wanke E. Excitable properties in astrocytes derived from human embryonic CNS stem cells. Eur J Neurosci 2000;12:3549–3559.

    Article  PubMed  CAS  Google Scholar 

  110. Ye ZC, Rothstein JD, Sontheimer H. Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J Neurosci 1999;19:10,767–10,777.

    PubMed  CAS  Google Scholar 

  111. Ishiuchi S, Tsuzuki K, Yoshida Y, et al. Blockage of Ca2+-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med 2002;8:971–978.

    Article  PubMed  CAS  Google Scholar 

  112. Soroceanu L, Manning TJ, Jr, Sontheimer H. Modulation of glioma cell migration and invasion using Cl− and K+ion channel blockers. J Neurosci 1999;19:5942–5954.

    PubMed  CAS  Google Scholar 

  113. Ranson CB, Sontheimer H. BK channels in human glioma cells. J Neurophysiol 2001;85:790–803.

    Google Scholar 

  114. Olsen ML, Sontheimer H. Mislocalization of Kir channels in malignant glia. Glia 2004;46:63–73.

    Article  PubMed  CAS  Google Scholar 

  115. Becchetti A, De Fusco M, Crociani O, et al. The human Ether a go-go like (HELK2) K+ channel: functional expression in heterologous systems and properties in astrocytoma cells. Eur J Neurosci 2002;16:415–428.

    Article  PubMed  Google Scholar 

  116. Patt S, Preubat K, Beetz C, et al. Expression of ether a go-go potassium channels in human gliomas. Neurosci Letts 2004;368:249–253.

    Article  CAS  Google Scholar 

  117. Masi A, Bechetti A, Restano-Cassulini R, et al. HERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma-cells. Br J Cancer, in press.

    Google Scholar 

  118. DeCoursey TE, Chandy GK, Gupta S, Cahalan MD. Voltage-gated K+ channels in human lymphocytes: a role in mitogenesis? Nature 1984;307:465–468.

    Article  PubMed  CAS  Google Scholar 

  119. Lees-Miller JP, Kondo C, Wang L, Duff HJ. Electrophysiological characterization of an alternatively processed ERG K+ channel in mouse and human hearts. Circ Res 1997;81:719–726.

    PubMed  CAS  Google Scholar 

  120. London B, Trudeau MC, Newton KP, et al. Two isoforms of the mouse ether-a-gò-gò-relatedbgene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current. Circ Res 1997;81:870–878.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Arcangeli, A., Becchetti, A. (2006). Ion Channels and the Cell Cycle. In: Janigro, D. (eds) The Cell Cycle in the Central Nervous System. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-021-8_8

Download citation

Publish with us

Policies and ethics