Skip to main content

Genetics of Obesity and Diabetes

  • Chapter
  • 2353 Accesses

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

Obesity and diabetes mellitus are two disease states with significant morbidity and mortality, the prevalence of which is reaching the point of an international epidemic, with continuously increasing numbers of affected individuals (1). Full elucidation of the pathogenesis of obesity and diabetes mellitus and, thus, the development of preventative and therapeutic approaches require delineation of the genetic defects associated with these disease states and clarification of the molecular mechanisms that lead from genotype to phenotype. This chapter focuses on recent advances in the field and, by presenting data from several large-scale human studies and a wide range of animal models, outlines researchers’ current knowledge on the genetics of obesity and diabetes (with an emphasis on type 2 diabetes). A good understanding of the mutations and molecular pathways involved in the development of disease could allow presymptomatic diagnosis and more accurate prognosis and could eventually reveal better therapeutic targets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047–1053.

    Article  PubMed  Google Scholar 

  2. Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav Genet 1997;27:325–351.

    Article  PubMed  CAS  Google Scholar 

  3. Hill JO, Peters JC. Environmental contributions to the obesity epidemic. Science 1998;280:1371–1374.

    Article  PubMed  CAS  Google Scholar 

  4. West DB, Waguespack J, McCollister S. Dietary obesity in the mouse: interaction of strain with diet composition. Am J Physiol 1995;268:R658–R665.

    PubMed  CAS  Google Scholar 

  5. Rice T, Sjostrom CD, Perusse L, Rao DC, Sjostrom L, Bouchard C. Segregation analysis of body mass index in a large sample selected for obesity: the Swedish Obese Subjects study. Obes Res 1999;7:246–255.

    PubMed  CAS  Google Scholar 

  6. Tschop M, Heiman ML. Rodent obesity models: an overview. Exp Clin Endocrinol Diabetes 2001;109:307–319.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425–432.

    Article  PubMed  CAS  Google Scholar 

  8. Miller MW, Duhl DM, Vrieling H, et al. Cloning of the mouse agouti gene predicts a secreted protein ubiquitously expressed in mice carrying the lethal yellow mutation. Genes Dev 1993;7:454–467.

    Article  PubMed  CAS  Google Scholar 

  9. Kleyn PW, Fan W, Kovats SG, et al. Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family. Cell 1996;85:281–290.

    Article  PubMed  CAS  Google Scholar 

  10. Tartaglia LA, Dembski M, Weng X, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995;83:1263–1271.

    Article  PubMed  CAS  Google Scholar 

  11. Naggert JK, Fricker LD, Varlamov O, et al. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity. Nat Genet 1995;10:135–142.

    Article  PubMed  CAS  Google Scholar 

  12. Gunn TM, Miller KA, He L, et al. The mouse mahogany locus encodes a transmembrane form of human attractin. Nature 1999;398:152–156.

    Article  PubMed  CAS  Google Scholar 

  13. Butler AA, Cone RD. Knockout models resulting in the development of obesity. Trends Genet 2001;17:S50–S54.

    Article  PubMed  CAS  Google Scholar 

  14. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998;19:155–157.

    Article  PubMed  CAS  Google Scholar 

  15. Huszar D, Lynch CA, Fairchild-Huntress V, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997;88:131–141.

    Article  PubMed  CAS  Google Scholar 

  16. Marsh DJ, Weingarth DT, Novi DE, et al. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci USA 2002;99:3240–3245.

    Article  PubMed  CAS  Google Scholar 

  17. Martinez-Botas J, Anderson JB, Tessier D, et al. Absence of perilipin results in leanness and reverses obesity in Lepr(db/db) mice. Nat Genet 2000;26:474–479.

    Article  PubMed  CAS  Google Scholar 

  18. Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med 2001;7:1138–1143.

    Article  PubMed  CAS  Google Scholar 

  19. Bachman ES, Dhillon H, Zhang CY, et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 2002;297:843–845.

    Article  PubMed  CAS  Google Scholar 

  20. Hrabe de Angelis MH, Flaswinkel H, Fuchs H, et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet 2000;25:444–447.

    Article  CAS  Google Scholar 

  21. Nolan PM, Peters J, Strivens M, et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nat Genet 2000;25:440–443.

    Article  PubMed  CAS  Google Scholar 

  22. Justice MJ. Capitalizing on large-scale mouse mutagenesis screens. Nat Rev Genet 2000;1:109–115.

    Article  PubMed  CAS  Google Scholar 

  23. Meyer CW, Korthaus D, Jagla W, et al. A novel missense mutation in the mouse growth hormone gene causes semidominant dwarfism, hyperghrelinemia, and obesity. Endocrinology 2004;145:2531–2541.

    Article  PubMed  CAS  Google Scholar 

  24. Morris KH, Ishikawa A, Keightley PD. Quantitative trait loci for growth traits in C57BL/6J × DBA/2J mice. Mamm Genome 1999;10:225–228.

    Article  PubMed  CAS  Google Scholar 

  25. Rance KA, Heath SC, Keightley PD. Mapping quantitative trait loci for body weight on the X chromosome in mice. II. Analysis of congenic backcrosses. Genet Res 1997;70:125–133.

    Article  PubMed  CAS  Google Scholar 

  26. Taylor BA, Tarantino LM, Phillips SJ. Gender-influenced obesity QTLs identified in a cross involving the KK type II diabetes-prone mouse strain. Mamm Genome 1999;10:963–968.

    Article  PubMed  CAS  Google Scholar 

  27. Brockmann GA, Kratzsch J, Haley CS, Renne U, Schwerin M, Karle S. Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F(2) variance of growth and obesity in DU6i × DBA/2 mice. Genome Res 2000;10:1941–1957.

    Article  PubMed  CAS  Google Scholar 

  28. Kloting I, Kovacs P, van den Brandt J. Quantitative trait loci for body weight, blood pressure, blood glucose, and serum lipids: linkage analysis with wild rats (Rattus norvegicus). Biochem Biophys Res Commun 2001;284:1126–1133.

    Article  PubMed  CAS  Google Scholar 

  29. Andersson L, Haley CS, Ellegren H, et al. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 1994;263:1771–1774.

    Article  PubMed  CAS  Google Scholar 

  30. MacNeil MD, Grosz MD. Genome-wide scans for QTL affecting carcass traits in Hereford x composite double backcross populations. J Anim Sci 2002;80:2316–2324.

    PubMed  CAS  Google Scholar 

  31. Comuzzie AG, Cole SA, Martin L, et al. The baboon as a nonhuman primate model for the study of the genetics of obesity. Obes Res 2003;11:75–80.

    PubMed  Google Scholar 

  32. Clement K, Boutin P, Froguel P. Genetics of obesity. Am J Pharmacogenomics 2002;2:177–187.

    Article  PubMed  CAS  Google Scholar 

  33. Shuldiner AR, Sabra M. Trp64Arg beta3-adrenoceptor: when does a candidate gene become a disease-susceptibility gene? Obes Res 2001;9:806–809.

    PubMed  CAS  Google Scholar 

  34. Sakane N, Yoshida T, Umekawa T, Kogure A, Takakura Y, Kondo M. Effects of Trp64Arg mutation in the beta 3-adrenergic receptor gene on weight loss, body fat distribution, glycemic control, and insulin resistance in obese type 2 diabetic patients. Diabetes Care 1997;20:1887–1890.

    Article  PubMed  CAS  Google Scholar 

  35. Kim-Motoyama H, Yasuda K, Yamaguchi T, et al. A mutation of the beta 3-adrenergic receptor is associated with visceral obesity but decreased serum triglyceride. Diabetologia 1997;40:469–472.

    Article  PubMed  CAS  Google Scholar 

  36. Walston J, Andersen RE, Seibert M, et al. Arg64 beta3-adrenoceptor variant and the components of energy expenditure. Obes Res 2003;11:509–511.

    PubMed  CAS  Google Scholar 

  37. Pihlajamaki J, Vanhala M, Vanhala P, Laakso M. The Pro12Ala polymorphism of the PPAR gamma 2 gene regulates weight from birth to adulthood. Obes Res 2004;12:187–190.

    PubMed  CAS  Google Scholar 

  38. Stumvoll M, Tschritter O, Fritsche A, et al. Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes. Diabetes 2002;51:37–41.

    Article  PubMed  CAS  Google Scholar 

  39. Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, Kahn CR. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 1998;339:953–959.

    Article  PubMed  CAS  Google Scholar 

  40. Menzaghi C, Ercolino T, Di Paola R, et al. A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome. Diabetes 2001;51:2306–2312.

    Article  Google Scholar 

  41. Doney A, Fischer B, Frew D, et al. Haplotype analysis of the PPARgamma Pro12Ala and C1431T variants reveals opposing associations with body weight. BMC Genet 2002;3:21.

    Article  PubMed  Google Scholar 

  42. Luan J, Browne PO, Harding AH, et al. Evidence for gene-nutrient interaction at the PPARgamma locus. Diabetes 2001;50:686–689.

    Article  PubMed  CAS  Google Scholar 

  43. Miraglia del Giudice E, Santoro N, Cirillo G, et al. Molecular screening of the ghrelin gene in Italian obese children: the Leu72Met variant is associated with an earlier onset of obesity. Int J Obes Relat Metab Disord 2004;28:447–450.

    Article  CAS  Google Scholar 

  44. Garenc C, Perusse L, Chagnon YC, et al. The hormone-sensitive lipase gene and body composition: the HERITAGE Family Study. Int J Obes Relat Metab Disord 2002;26:220–227.

    Article  PubMed  CAS  Google Scholar 

  45. Meirhaeghe A, Helbecque N, Cottel D, Amouyel P. Beta2-adrenoceptor gene polymorphism, body weight, and physical activity. Lancet 1999;353:896.

    Article  PubMed  CAS  Google Scholar 

  46. Meirhaeghe A, Helbecque N, Cottel D, Amouyel P. Impact of polymorphisms of the human beta2-adrenoceptor gene on obesity in a French population. Int J Obes Relat Metab Disord 2000;24:382–387.

    Article  PubMed  CAS  Google Scholar 

  47. Meirhaeghe A, Luan J, Selberg-Franks P, et al. The effect of the Gly16Arg polymorphism of the beta(2)-adrenergic receptor gene on plasma free fatty acid levels is modulated by physical activity. J Clin Endocrinol Metab 2001;86:5881–5887.

    Article  PubMed  CAS  Google Scholar 

  48. Corella D, Guillen M, Portoles O, et al. Gender specific associations of the Trp64Arg mutation in the beta3-adrenergic receptor gene with obesity-related phenotypes in a Mediterranean population: interaction with a common lipoprotein lipase gene variation. J Intern Med 2001;250:348–360.

    Article  PubMed  CAS  Google Scholar 

  49. Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997;387:903–908.

    Article  PubMed  CAS  Google Scholar 

  50. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998;18:213–215.

    Article  PubMed  CAS  Google Scholar 

  51. Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab 1999;84:3686–3695.

    Article  PubMed  CAS  Google Scholar 

  52. Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996;334:292–295.

    Article  PubMed  CAS  Google Scholar 

  53. Clement K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998;392:398–401.

    Article  PubMed  CAS  Google Scholar 

  54. Jackson RS, Creemers JW, Ohagi S, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 1997;16:303–306.

    Article  PubMed  CAS  Google Scholar 

  55. Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest 2000;106:253–262.

    PubMed  CAS  Google Scholar 

  56. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003;348:1085–1095.

    Article  PubMed  CAS  Google Scholar 

  57. Branson R, Potoczna N, Kral JG, Lentes KU, Hoehe MR, Horber FF. Binge eating as a major phenotype of melanocortin 4 receptor gene mutations. N Engl J Med 2003;348:1096–1103.

    Article  PubMed  CAS  Google Scholar 

  58. Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999;402:880–883.

    PubMed  CAS  Google Scholar 

  59. Holder JL Jr, Butte NF, Zinn AR. Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum Mol Genet 2000;9:101–108.

    Article  PubMed  CAS  Google Scholar 

  60. Lee YS, Poh LK, Loke KY. A novel melanocortin 3 receptor gene (MC3R) mutation associated with severe obesity. J Clin Endocrinol Metab 2002;87:1423–1426.

    Article  PubMed  CAS  Google Scholar 

  61. Park Y, Eisenbarth GS. Genetic susceptibility factors of Type 1 diabetes in Asians. Diabetes Metab Res Rev 2001;17:2–11.

    Article  PubMed  CAS  Google Scholar 

  62. Kawano K, Hirashima T, Mori S, Natori T. OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain. Diabetes Res Clin Pract 1994;24(Suppl):S317–S320.

    Article  PubMed  Google Scholar 

  63. Nakhooda AF, Like AA, Chappel CI, Murray FT, Marliss EB. The spontaneously diabetic Wistar rat: metabolic and morphologic studies. Diabetes 1977;26:100–112.

    Article  PubMed  CAS  Google Scholar 

  64. Delovitch TL, Sing B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 1997;7:727–738.

    Article  PubMed  CAS  Google Scholar 

  65. Adorini L, Gregori S, Harrison LC. Understanding autoimmune diabetes: insights from mouse models. Trends Mol Med 2002;8:31–38.

    Article  PubMed  CAS  Google Scholar 

  66. Andre I, Gonzalez A, Wang B, Katz J, Benoist C, Mathis D. Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc Natl Acad Sci USA 1996;93:2260–2263.

    Article  PubMed  CAS  Google Scholar 

  67. Katz J, Benoist C, Mathis D. Major histocompatibility complex class I molecules are required for the development of insulitis in non-obese diabetic mice. Eur J Immunol 1993;23:3358–3360.

    Article  PubMed  CAS  Google Scholar 

  68. Fugger L. Human autoimmunity genes in mice. Curr Opin Immunol 2000;12:698–703.

    Article  PubMed  CAS  Google Scholar 

  69. Harper PS. Endocrine and reproductive disorders. In: Practical Genetic Counselling. Butterworth Heinemann, Oxford, UK, 268–270.

    Google Scholar 

  70. Redondo MJ, Fain PR, Eisenbarth GS. Genetics of type 1A diabetes. Recent Prog Horm Res 2001;56:69–89.

    Article  PubMed  CAS  Google Scholar 

  71. Singal DP, Blajchman MA. Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes 1973;22:429–432.

    PubMed  CAS  Google Scholar 

  72. Davies JL, Kawaguchi Y, Bennett ST, et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 1994;371:130–136.

    Article  PubMed  CAS  Google Scholar 

  73. Herr M, Dudbridge F, Zavattari P, et al. Evaluation of fine mapping strategies for a multifactorial disease locus: systematic linkage and association analysis of IDDM1 in the HLA region on chromosome 6p21. Hum Mol Genet 2000;9:1291–1301.

    Article  PubMed  CAS  Google Scholar 

  74. Nejentsev S, Reijonen H, Adojaan B, et al. The effect of HLA-B allele on the IDDM risk defined by DRB1*04 subtypes and DQB1*0302. Diabetes 1997;46:1888–1892.

    Article  PubMed  CAS  Google Scholar 

  75. Noble JA, Valdes AM, Thomson G, Erlich HA. The HLA class II locus DPB1 can influence susceptibility to type 1 diabetes. Diabetes 2000;49:121–125.

    Article  PubMed  CAS  Google Scholar 

  76. Undlien DE, Friede T, Rammensee HG, et al. HLA-encoded genetic predisposition in IDDM: DR4 subtypes may be associated with different degrees of protection. Diabetes 1997;46:143–149.

    Article  PubMed  CAS  Google Scholar 

  77. Van der Auwera B, Van Waeyenberge C, Schuit F, et al. DRB1*0403 protects against IDDM in Caucasians with the high-risk heterozygous DQA1*0301-DQB1*0302/DQA1*0501-DQB1*0201 genotype: Belgian Diabetes Registry. Diabetes 1995;44:527–530.

    Article  PubMed  Google Scholar 

  78. Ettinger RA, Liu AW, Nepom GT, Kwok WW. Exceptional stability of the HLA-DQA1*0102/DQB1*0602 alpha beta protein dimer, the class II MHC molecule associated with protection from insulin-dependent diabetes mellitus. J Immunol 1998;161:6439–6445.

    PubMed  CAS  Google Scholar 

  79. Bennett ST, Lucassen AM, Gough SC, et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 1995;9:284–292.

    Article  PubMed  CAS  Google Scholar 

  80. Bennett ST, Wilson AJ, Esposito L, et al. Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele: the IMDIAB Group. Nat Genet 1997;17:350–352.

    Article  PubMed  CAS  Google Scholar 

  81. Vafiadis P, Ounissi-Benkalha H, Palumbo M, et al. Class III alleles of the variable number of tandem repeat insulin polymorphism associated with silencing of thymic insulin predispose to type 1 diabetes. J Clin Endocrinol Metab 2001;86:3705–3710.

    Article  PubMed  CAS  Google Scholar 

  82. Gambelunghe G, Ghaderi M, Cosentino A, Falorni A, Brunetti P, Sanjeevi CB. Association of MHC Class I chain-related A (MIC-A) gene polymorphism with Type I diabetes. Diabetologia 2000;43:507–514.

    Article  PubMed  CAS  Google Scholar 

  83. Motohashi Y, Yamada S, Yanagawa T, et al. Vitamin D receptor gene polymorphism affects onset pattern of type 1 diabetes. J Clin Endocrinol Metab 2003;88:3137–3140.

    Article  PubMed  CAS  Google Scholar 

  84. Bugawan TL, Mirel DB, Valde AM, Panelo A, Pozzilli P, Erlich HA. Association and interaction of the IL4R, IL4, and IL13 loci with type 1 diabetes among Filipinos. Am J Hum Genet 2003;72:1505–1514.

    Article  PubMed  CAS  Google Scholar 

  85. Noble JA, White AM, Lazzeroni LC, et al. A polymorphism in the TCF7 gene, C883A, is associated with type 1 diabetes. Diabetes 2003;52:1579–1582.

    Article  PubMed  CAS  Google Scholar 

  86. Ide A, Kawasaki E, Abiru N, et al. Genetic association between interleukin-10 gene promoter region polymorphisms and type 1 diabetes age-at-onset. Hum Immunol 2002;63:690–695.

    Article  PubMed  CAS  Google Scholar 

  87. Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002;298:1395–1401.

    Article  PubMed  CAS  Google Scholar 

  88. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001;27:20, 21.

    Article  PubMed  CAS  Google Scholar 

  89. Amos AF, McCarty DJ, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet Med 2001;14(Suppl 5):S1–S85.

    Google Scholar 

  90. Poulsen P, Kyvik KO, Vaag A, Beck-Nielsen H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance—a population-based twin study. Diabetologia 1999;42:139–145.

    Article  PubMed  CAS  Google Scholar 

  91. Knowler WC, Pettitt DJ, Saad MF, Bennett PH. Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab Rev 1990;6:1–27.

    Article  PubMed  CAS  Google Scholar 

  92. Zimmet P, Taylor R, Ram P, et al. Prevalence of diabetes and impaired glucose tolerance in the biracial (Melanesian and Indian) population of Fiji: a rural-urban comparison. Am J Epidemiol 1983;118:673–688.

    PubMed  CAS  Google Scholar 

  93. Newman B, Selby JV, King MC, Slemenda C, Fabsitz R, Friedman GD. Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia 1987;30:763–768.

    Article  PubMed  CAS  Google Scholar 

  94. Barnett AH, Eff C, Leslie RD, Pyke DA. Diabetes in identical twins: a study of 200 pairs. Diabetologia 1981;20:87–93.

    Article  PubMed  CAS  Google Scholar 

  95. Joshi RL, Lamothe B, Cordonnier N, et al. Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. Embo J 1996;15:1542–1547.

    PubMed  CAS  Google Scholar 

  96. Accili D, Drago J, Lee EJ, et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet 1996;12:106–109.

    Article  PubMed  CAS  Google Scholar 

  97. Kim JK, Michael MD, Previs SF, et al. Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. J Clin Invest 2000;105:1791–1797.

    PubMed  CAS  Google Scholar 

  98. Bruning JC, Michael MD, Winnay JN, et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 1998;2:559–569.

    Article  PubMed  CAS  Google Scholar 

  99. Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 2000;6:87–97.

    Article  PubMed  CAS  Google Scholar 

  100. Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 1999;96:329–339.

    Article  PubMed  CAS  Google Scholar 

  101. Bruning JC, Gautam D, Burks DJ, et al. Role of brain insulin receptor in control of body weight and reproduction. Science 2000;289:2122–2125.

    Article  PubMed  CAS  Google Scholar 

  102. Tamemoto H, Kadowaki T, Tobe K, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 1994;372:182–186.

    Article  PubMed  CAS  Google Scholar 

  103. Araki E, Haag BL 3rd, Kahn CR. Cloning of the mouse insulin receptor substrate-1 (IRS-1) gene and complete sequence of mouse IRS-1. Biochim Biophys Acta 1994;1221:353–356.

    Article  PubMed  CAS  Google Scholar 

  104. Kubota N, Tobe K, Terauchi Y, et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 2000;49:1880–1889.

    Article  PubMed  CAS  Google Scholar 

  105. Withers DJ, Gutierrez JS, Towery H, et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998;391:900–904.

    Article  PubMed  CAS  Google Scholar 

  106. Liu SC, Wang Q, Lienhard GE, Keller SR. Insulin receptor substrate 3 is not essential for growth or glucose homeostasis. J Biol Chem 1999;274:18,093–18,099.

    Article  PubMed  CAS  Google Scholar 

  107. Cho H, Mu J, Kim JK, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001;292:1728–1731.

    Article  PubMed  CAS  Google Scholar 

  108. Fruman DA, Mauvais-Jarvis F, Pollard DA, et al. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 alpha. Nat Genet 2000;26:379–382.

    Article  PubMed  CAS  Google Scholar 

  109. Mauvais-Jarvis F, Ueki K, Fruman DA, et al. Reduced expression of the murine p85alpha subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. J Clin Invest 2002;109:141–149.

    Article  PubMed  CAS  Google Scholar 

  110. Terauchi Y, Tsuji Y, Satoh S, et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase. Nat Genet 1999;21:230–235.

    Article  PubMed  CAS  Google Scholar 

  111. Ueki K, Yballe CM, Brachmann SM, et al. Increased insulin sensitivity in mice lacking p85beta subunit of phosphoinositide 3-kinase. Proc Natl Acad Sci USA 2002;99:419–424.

    Article  PubMed  CAS  Google Scholar 

  112. Stenbit AE, Tsao TS, Li J, et al. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat Med 1997;3:1096–1101.

    Article  PubMed  CAS  Google Scholar 

  113. Katz EB, Stenbit AE, Hatton K, DePinho R, Charron MJ. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 1995;377:151–155.

    Article  PubMed  CAS  Google Scholar 

  114. Abel ED, Peroni O, Kim JK, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001;409:729–733.

    Article  PubMed  CAS  Google Scholar 

  115. Zisman A, Peroni OD, Abel ED, et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med 2000;6:924–928.

    Article  PubMed  CAS  Google Scholar 

  116. Marban SL, DeLoia JA, Gearhart JD. Hyperinsulinemia in transgenic mice carrying multiple copies of the human insulin gene. Dev Genet 1989;10:356–364.

    Article  PubMed  CAS  Google Scholar 

  117. Leroux L, Desbois P, Lamotte L, et al. Compensatory responses in mice carrying a null mutation for Ins1 or Ins2. Diabetes 2001;50(Suppl 1):S150–S153.

    Article  PubMed  CAS  Google Scholar 

  118. Duvillie B, Cordonnier N, Deltour L, et al. Phenotypic alterations in insulin-deficient mutant mice. Proc Natl Acad Sci USA 1997;94:5137–5140.

    Article  PubMed  CAS  Google Scholar 

  119. Terauchi Y, Sakura H, Yasuda K, et al. Pancreatic beta-cell-specific targeted disruption of glucokinase gene: diabetes mellitus due to defective insulin secretion to glucose. J Biol Chem 1995;270:30,253–30,256.

    Article  PubMed  CAS  Google Scholar 

  120. Guillam MT, Hummer E, Schaerer E, et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat Genet 1997;17:327–330.

    Article  PubMed  CAS  Google Scholar 

  121. Grupe A, Hultgren B, Ryan A, Ma YH, Bauer M, Stewart TA. Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Cell 1995;83:69–78.

    Article  PubMed  CAS  Google Scholar 

  122. Postic C, Shiota M, Niswender KD, et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 1999;274:305–315.

    Article  PubMed  CAS  Google Scholar 

  123. Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J. Sur1 knockout mice: a model for K(ATP) channel-independent regulation of insulin secretion. J Biol Chem 2000;275:9270–9277.

    Article  PubMed  CAS  Google Scholar 

  124. Miki T, Nagashima K, Tashiro F, et al. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci USA 1998;95:10,402–10,406.

    Article  PubMed  CAS  Google Scholar 

  125. Kido Y, Burks DJ, Withers D, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest 2000;105:199–205.

    PubMed  CAS  Google Scholar 

  126. Bruning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D, Kahn CR. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 1997;88:561–572.

    Article  PubMed  CAS  Google Scholar 

  127. Terauchi Y, Iwamoto K, Tamemoto H, et al. Development of non-insulin-dependent diabetes mellitus in the double knockout mice with disruption of insulin receptor substrate-1 and beta cell glucokinase genes: genetic reconstitution of diabetes as a polygenic disease. J Clin Invest 1997;99:861–866.

    PubMed  CAS  Google Scholar 

  128. Rossetti L, Stenbit AE, Chen W, et al. Peripheral but not hepatic insulin resistance in mice with one disrupted allele of the glucose transporter type 4 (GLUT4) gene. J Clin Invest 1997;100:1831–1839.

    Article  PubMed  CAS  Google Scholar 

  129. Bruning JC, Winnay J, Cheatham B, Kahn CR. Differential signaling by insulin receptor substrate 1 (IRS-1) and IRS-2 in IRS-1-deficient cells. Mol Cell Biol 1997;17:1513–1521.

    PubMed  CAS  Google Scholar 

  130. Kaburagi Y, Satoh S, Tamemoto H, et al. Role of insulin receptor substrate-1 and pp60 in the regulation of insulin-induced glucose transport and GLUT4 translocation in primary adipocytes. J Biol Chem 1997;272:25,839–25,844.

    Article  PubMed  CAS  Google Scholar 

  131. Yamauchi T, Tobe K, Tamemoto H, et al. Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol Cell Biol 1996;16:3074–3084.

    PubMed  CAS  Google Scholar 

  132. Kalidas K, Wasson J, Glaser B, et al. Mapping of the human insulin receptor substrate-2 gene, identification of a linked polymorphic marker and linkage analysis in families with Type II diabetes: no evidence for a major susceptibility role. Diabetologia 1998;41:1389–1391.

    Article  PubMed  CAS  Google Scholar 

  133. Hanis CL, Boerwinkle E, Chakraborty R, et al. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet 1996;13:161–166.

    Article  PubMed  CAS  Google Scholar 

  134. Hanson RL, Ehm MG, Pettitt DJ, et al. An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am J Hum Genet 1998;63:1130–1138.

    Article  PubMed  CAS  Google Scholar 

  135. Ehm MG, Karnoub MC, Sakul H, et al. Genomewide search for type 2 diabetes susceptibility genes in four American populations. Am J Hum Genet 2000;66:1871–1881.

    Article  PubMed  CAS  Google Scholar 

  136. Duggirala R, Blangero J, Almasy L, et al. Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am J Hum Genet 1999;64:1127–1140.

    Article  PubMed  CAS  Google Scholar 

  137. Parker A, Meyer J, Lewitzky S, et al. A gene conferring susceptibility to type 2 diabetes in conjunction with obesity is located on chromosome 18p11. Diabetes 2001;50:675–680.

    Article  PubMed  CAS  Google Scholar 

  138. Vionnet N, Hani El H, Dupont S, et al. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21–q24. Am J Hum Genet 2000;67:1470–1480.

    Article  PubMed  CAS  Google Scholar 

  139. Das SK, Hasstedt SJ, Zhang Z, Elbein SC. Linkage and association mapping of a chromosome 1q21–q24 type 2 diabetes susceptibility locus in northern European Caucasians. Diabetes 2004;53:492–499.

    Article  PubMed  CAS  Google Scholar 

  140. Florez JC, Hirschhorn J, Altshuler D. The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits. Annu Rev Genomics Hum Genet 2003;4:257–291.

    Article  PubMed  CAS  Google Scholar 

  141. Sreenan SK, Zhou YP, Otani K, et al. Calpains play a role in insulin secretion and action. Diabetes 2001;50:2013–2020.

    Article  PubMed  CAS  Google Scholar 

  142. Horikawa Y, Oda N, Cox NJ, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000;26:163–175.

    Article  PubMed  CAS  Google Scholar 

  143. Tsai HJ, Sun G, Weeks DE, et al. Type 2 diabetes and three calpain-10 gene polymorphisms in Samoans: no evidence of association. Am J Hum Genet 2001;69:1236–1244.

    Article  PubMed  CAS  Google Scholar 

  144. Rasmussen SK, Urhammer SA, Berglund L, et al. Variants within the calpain-10 gene on chromosome 2q37 (NIDDM1) and relationships to type 2 diabetes, insulin resistance, and impaired acute insulin secretion among Scandinavian Caucasians. Diabetes 2002;51:3561–3567.

    Article  PubMed  CAS  Google Scholar 

  145. Fingerlin TE, Erdos MR, Watanabe RM, et al. Variation in three single nucleotide polymorphisms in the calpain-10 gene not associated with type 2 diabetes in a large Finnish cohort. Diabetes 2002;51:1644–1648.

    Article  PubMed  CAS  Google Scholar 

  146. Daimon M, Oizumi T, Saitoh T, et al. Calpain 10 gene polymorphisms are related, not to type 2 diabetes, but to increased serum cholesterol in Japanese. Diabetes Res Clin Pract 2002;56:147–152.

    Article  PubMed  CAS  Google Scholar 

  147. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet Med 2002;4:45–61.

    Article  PubMed  CAS  Google Scholar 

  148. Dahlman I, Eaves IA, Kosoy R, et al. Parameters for reliable results in genetic association studies in common disease. Nat Genet 2002;30:149, 150.

    Article  PubMed  CAS  Google Scholar 

  149. Demenais F, Kanninen T, Lindgren CM, et al. A meta-analysis of four European genome screens (GIFT Consortium) shows evidence for a novel region on chromosome 17p11.2-q22 linked to type 2 diabetes. Hum Mol Genet 2003;12:1865–1873.

    Article  PubMed  CAS  Google Scholar 

  150. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG. Replication validity of genetic association studies. Nat Genet 2001;29:306–309.

    Article  PubMed  CAS  Google Scholar 

  151. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003;33:177–182.

    Article  PubMed  CAS  Google Scholar 

  152. Deeb SS, Fajas L, Nemoto M, et al. A Prol2Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998;20:284–287.

    Article  PubMed  CAS  Google Scholar 

  153. Yen CJ, Beamer BA, Negri C, et al. Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: identification of a Prol2Ala PPAR gamma 2 missense mutation. Biochem Biophys Res Commun 1997;241:270–274.

    Article  PubMed  CAS  Google Scholar 

  154. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARgamma Prol2Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000;26:76–80.

    Article  PubMed  CAS  Google Scholar 

  155. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997;20:1183–1197.

    Google Scholar 

  156. Haneda M, Polonsky KS, Bergenstal RM, et al. Familial hyperinsulinemia due to a structurally abnormal insulin: definition of an emerging new clinical syndrome. N Engl J Med 1984;310:1288–1294.

    Article  PubMed  CAS  Google Scholar 

  157. Psiachou H, Mitton S, Alaghband-Zadeh J, Hone J, Taylor SI, Sinclair L. Leprechaunism and homozygous nonsense mutation in the insulin receptor gene. Lancet 1993;342:924.

    Article  PubMed  CAS  Google Scholar 

  158. Accili D, Frapier C, Mosthaf L, et al. A mutation in the insulin receptor gene that impairs transport of the receptor to the plasma membrane and causes insulin-resistant diabetes. EMBO J 1989;8:2509–2517.

    PubMed  CAS  Google Scholar 

  159. Kahn CR, Flier JS, Bar RS, et al. The syndromes of insulin resistance and acanthosis nigricans: insulin-receptor disorders in man. N Engl J Med 1976;294:739–745.

    Article  PubMed  CAS  Google Scholar 

  160. Moller DE, Cohen O, Yamaguchi Y, et al. Prevalence of mutations in the insulin receptor gene in subjects with features of the type A syndrome of insulin resistance. Diabetes 1994;43:247–255.

    Article  PubMed  CAS  Google Scholar 

  161. Agarwal AK, Arioglu E, De Almeida S, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet 2002;31:21–23.

    Article  PubMed  CAS  Google Scholar 

  162. Magre J, Delepine M, Khallouf E, et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 2001;28:365–370.

    Article  PubMed  CAS  Google Scholar 

  163. Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 2000;9:109–112.

    Article  PubMed  CAS  Google Scholar 

  164. Agarwal AK, Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab 2002;87:408–411.

    Article  PubMed  CAS  Google Scholar 

  165. Novelli G, Muchir A, Sangiuolo F, et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet 2002;71:426–431.

    Article  PubMed  CAS  Google Scholar 

  166. Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner’s syndrome gene. Science 1996;272:258–262.

    Article  PubMed  CAS  Google Scholar 

  167. Henning KA, Li L, Iyer N, et al. The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell 1995;82:555–564.

    Article  PubMed  CAS  Google Scholar 

  168. Flier JS, Mantzoros C. Syndromes of severe insulin resistance. In: De Groot L ed. Endocrinology Saunders, Philadelphia, PA, pp. 799–810.

    Google Scholar 

  169. Wagenknecht LE, Bowden DW, Carr JJ, Langefeld CD, Freedman BI, Rich SS. Familial aggregation of coronary artery calcium in families with type 2 diabetes. Diabetes 2001;50:861–866.

    Article  PubMed  CAS  Google Scholar 

  170. Pettitt DJ, Saad MF, Bennett PH, Nelson RG, Knowler WC. Familial predisposition to renal disease in two generations of Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1990;33:438–443.

    Article  PubMed  CAS  Google Scholar 

  171. Freedman BI, Tuttle AB, Spray BJ. Familial predisposition to nephropathy in African-Americans with non-insulin-dependent diabetes mellitus. Am J Kidney Dis 1995;25:710–713.

    PubMed  CAS  Google Scholar 

  172. O’Dea DF, Murphy SW, Hefferton D, Parfrey PS. Higher risk for renal failure in first-degree relatives of white patients with end-stage renal disease: a population-based study. Am J Kidney Dis 1998;32:794–801.

    PubMed  CAS  Google Scholar 

  173. Bowden DW. Genetics of diabetes complications. Curr Diabetes Rep 2002;2:191–200.

    Article  Google Scholar 

  174. Yamamoto T, Sato T, Hosoi M, et al. Aldose reductase gene polymorphism is associated with progression of diabetic nephropathy in Japanese patients with type 1 diabetes mellitus. Diabetes Obes Metab 2003;5:51–57.

    Article  PubMed  CAS  Google Scholar 

  175. Jacobsen P, Tarnow L, Carstensen B, Hovind P, Poirier O, Parving HH. Genetic variation in the Renin-Angiotensin system and progression of diabetic nephropathy. J Am Soc Nephrol 2003;14:2843–2850.

    Article  PubMed  CAS  Google Scholar 

  176. Fujisawa T, Ikegami H, Kawaguchi Y, et al. Meta-analysis of association of insertion/deletion polymorphism of angiotensin I-converting enzyme gene with diabetic nephropathy and retinopathy. Diabetologia 1998;41:47–53.

    Article  PubMed  CAS  Google Scholar 

  177. Kunz R, Bork JP, Fritsche L, Ringel J, Sharma AM. Association between the angiotensin-converting enzyme-insertion/deletion polymorphism and diabetic nephropathy: a methodologic appraisal and systematic review. J Am Soc Nephrol 1998;9:1653–1663.

    PubMed  CAS  Google Scholar 

  178. Demaine AG. Polymorphisms of the aldose reductase gene and susceptibility to diabetic microvascular complications. Curr Med Chem 2003;10:1389–1398.

    Article  PubMed  CAS  Google Scholar 

  179. Bluher M, Michael MD, Peroni OD, et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 2002;3:25–38.

    Article  PubMed  CAS  Google Scholar 

  180. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004;89:2548–2556.

    Article  PubMed  CAS  Google Scholar 

  181. Masuzaki H, Ogawa Y, Aizawa-Abe M, et al. Glucose metabolism and insulin sensitivity in transgenic mice overexpressing leptin with lethal yellow agouti mutation: usefulness of leptin for the treatment of obesity-associated diabetes. Diabetes 1999;48:1615–1622.

    Article  PubMed  CAS  Google Scholar 

  182. Bjorbaek C, Kahn BB. Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res 2004;59:305–331.

    Article  PubMed  CAS  Google Scholar 

  183. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993;259:87–91.

    Article  PubMed  CAS  Google Scholar 

  184. Hotamisligil GS. Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord 2003;27(Suppl 3):S53–S55.

    Article  PubMed  CAS  Google Scholar 

  185. Ruan H, Lodish HF. Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev 2003;14:447–455.

    Article  PubMed  CAS  Google Scholar 

  186. Juhan-Vague I, Alessi MC, Mavri A, Morange PE. Plasminogen activator inhibitor-1, inflammation, obesity, insulin resistance and vascular risk. J Thromb Haemost 2003;1:1575–1579.

    Article  PubMed  CAS  Google Scholar 

  187. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001;7:941–946.

    Article  PubMed  CAS  Google Scholar 

  188. Fernandez-Real JM, Ricart W. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev 2003;24:278–301.

    Article  PubMed  CAS  Google Scholar 

  189. Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA 2003;100:7265–7270.

    Article  PubMed  CAS  Google Scholar 

  190. Cianflone K, Xia Z, Chen LY. Critical review of acylation-stimulating protein physiology in humans and rodents. Biochim Biophys Acta 2003;1609:127–143.

    Article  PubMed  CAS  Google Scholar 

  191. Banerjee RR, Lazar MA. Resistin: molecular history and prognosis. J Mol Med 2003;81:218–226.

    PubMed  CAS  Google Scholar 

  192. Engeli S, Schling P, Gorzelniak K, et al. The adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome? Int J Biochem Cell Biol 2003;35:807–825.

    Article  PubMed  CAS  Google Scholar 

  193. Goossens GH, Blaak EE, van Baak MA. Possible involvement of the adipose tissue renin-angiotensin system in the pathophysiology of obesity and obesity-related disorders. Obes Rev 2003;4:43–55.

    Article  PubMed  CAS  Google Scholar 

  194. Kadowaki T, Hara K, Yamauchi T, Terauchi Y, Tobe K, Nagai R. Molecular mechanism of insulin resistance and obesity. Exp Biol Med (Maywood) 2003;228:1111–1117.

    CAS  Google Scholar 

  195. Reue K, Peterfy M. Mouse models of lipodystrophy. Curr Atheroscler Rep 2000;2:390–396.

    Article  PubMed  CAS  Google Scholar 

  196. Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995;269:543–546.

    Article  PubMed  CAS  Google Scholar 

  197. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997;389:610–614.

    Article  PubMed  CAS  Google Scholar 

  198. Banerjee RR, Rangwala SM, Shapiro JS, et al. Regulation of fasted blood glucose by resistin. Science 2004;303:1195–1198.

    Article  PubMed  CAS  Google Scholar 

  199. Liu YJ, Rocha-Sanchez SM, Liu PY, et al. Tests of linkage and/or association of the LEPR gene polymorphisms with obesity phenotypes in Caucasian nuclear families. Physiol Genomics 2004;17:101–106.

    Article  PubMed  CAS  Google Scholar 

  200. Gonzalez Sanchez JL, Serrano Rios M, Fernandez Perez C, Laakso M, Martinez Larrad MT. Effect of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma-2 gene on adiposity, insulin sensitivity and lipid profile in the Spanish population. Eur J Endocrinol 2002;147:495–501.

    Article  PubMed  CAS  Google Scholar 

  201. Hu FB, Doria A, Li T, et al. Genetic variation at the adiponectin locus and risk of type 2 diabetes in women. Diabetes 2004;53:209–213.

    Article  PubMed  CAS  Google Scholar 

  202. Yiannakouris N, Yannakoulia M, Melistas L, Chan JL, Klimis-Zacas D, Mantzoros CS. The Q223R polymorphism of the leptin receptor gene is significantly associated with obesity and predicts a small percentage of body weight and body composition variability. J Clin Endocrinol Metab 2001;86:4434–4439.

    Article  PubMed  CAS  Google Scholar 

  203. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science 1996;273:1516–1517.

    Article  PubMed  CAS  Google Scholar 

  204. Allison DB, Neale MC, Zannolli R, Schork NJ, Amos CI, Blangero J. Testing the robustness of the likelihood-ratio test in a variance-component quantitative-trait loci-mapping procedure. Am J Hum Genet 1999;65:531–544.

    Article  PubMed  CAS  Google Scholar 

  205. Allison DB, Schork NJ. Selected methodological issues in meiotic mapping of obesity genes in humans: issues of power and efficiency. Behav Genet 1997;27:401–421.

    Article  PubMed  CAS  Google Scholar 

  206. Marth GT, Korf I, Yandell MD, et al. A general approach to single-nucleotide polymorphism discovery. Nat Genet 1999;23:452–456.

    Article  PubMed  CAS  Google Scholar 

  207. Hrabe de Angelis M, Balling R. Large scale ENU screens in the mouse: genetics meets genomics. Mutat Res 1998;400:25–32.

    Google Scholar 

  208. Brown SD, Nolan PM. Mouse mutagenesis-systematic studies of mammalian gene function. Hum Mol Genet 1998;7:1627–1633.

    Article  PubMed  CAS  Google Scholar 

  209. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995;11:241–247.

    Article  PubMed  CAS  Google Scholar 

  210. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993;75:59–72.

    PubMed  CAS  Google Scholar 

  211. Yakar S, Liu JL, Fernandez AM, et al. Liver-specific igf-1 gene deletion leads to muscle insulin insensitivity. Diabetes 2001;50:1110–1118.

    Article  PubMed  CAS  Google Scholar 

  212. Filson AJ, Louvi A, Efstratiadis A, Robertson EJ. Rescue of the T-associated maternal effect in mice carrying null mutations in Igf-2 and Igf2r, two reciprocally imprinted genes. Development 1993;118:731–736.

    PubMed  CAS  Google Scholar 

  213. Petrik J, Pell JM, Arany E, et al. Overexpression of insulin-like growth factor-II in transgenic mice is associated with pancreatic islet cell hyperplasia. Endocrinology 1999;140:2353–2363.

    Article  PubMed  CAS  Google Scholar 

  214. Lauro D, Kido Y, Castle AL, et al. Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue. Nat Genet 1998;20:294–298.

    Article  PubMed  CAS  Google Scholar 

  215. Chang PY, Benecke H, Le Marchand-Brustel Y, Lawitts J, Moller DE. Expression of a dominant-negative mutant human insulin receptor in the muscle of transgenic mice. J Biol Chem 1994; 269:16,034–16,040.

    PubMed  CAS  Google Scholar 

  216. Xuan S, Kitamura T, Nakae J, et al. Defective insulin secretion in pancreatic beta cells lacking type 1 IGF receptor. J Clin Invest 2002;110:1011–1019.

    Article  PubMed  CAS  Google Scholar 

  217. Bali D, Svetlanov A, Lee HW, et al. Animal model for maturity-onset diabetes of the young generated by disruption of the mouse glucokinase gene. J Biol Chem 1995;270:21,464–21,467.

    Article  PubMed  CAS  Google Scholar 

  218. Pende M, Kozma SC, Jaquet M, et al. Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 2000;408:994–997.

    Article  PubMed  CAS  Google Scholar 

  219. Withers DJ, Burks DJ, Towery HH, Altamuro SL, Flint CL, White MF. Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nat Genet 1999;23:32–40.

    PubMed  CAS  Google Scholar 

  220. Laustsen PG, Michael MD, Crute BE, et al. Lipoatrophic diabetes in Irs1(-/-)/Irs3(-/-) double knockout mice. Genes Dev 2002;16:3213–3222.

    Article  PubMed  CAS  Google Scholar 

  221. Kido Y, Nakae J, Hribal ML, Xuan S, Efstratiadis A, Accili D. Effects of mutations in the insulin-like growth factor signaling system on embryonic pancreas development and beta-cell compensation to insulin resistance. J Biol Chem 2002;277:36,740–36,747.

    Article  PubMed  CAS  Google Scholar 

  222. Fernandez AM, Kim JK, Yakar S, et al. Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev 2001;15:1926–1934.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sanoudou, D., Mantzoros, C.S. (2006). Genetics of Obesity and Diabetes. In: Mantzoros, C.S. (eds) Obesity and Diabetes. Contemporary Diabetes. Humana Press. https://doi.org/10.1007/978-1-59259-985-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-985-1_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-538-5

  • Online ISBN: 978-1-59259-985-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics