Skip to main content

Pathology of Human Endothelium in Septic Organ Failure

  • Chapter
Forensic Pathology Reviews

Part of the book series: Forensic Pathology Reviews ((FPR,volume 4))

Abstract

Human sepsis is a spectrum of pathophysiological changes in the host system resulting from a generalized activation and systemic expression of the host’s inflammatory pathways in response to infection. The endothelium plays a key role in the pathogenesis of sepsis, and studies of endothelial derangement and its underlying pathophysiological mechanisms in sepsis have become of considerable interest in both the clinical and pathological fields. Recognition, as well as contact formation, between leukocytes and the endothelium is dependent on the presence of both cytokines and adhesion molecules that mediate leukocyte-endothelial cell adhesive interactions. The adherence of leukocytes on the vascular endothelial cell surface and the transmigration through the endothelial layer is regulated by at least three adhesion molecule families: the selectins (E-Selectin, L-Selectin, P-Selectin), the integrins (e.g., lymphocyte function-associated antigen-1, Mac-1, very late activation antigen-4), and the immunoglobulin superfamily (e.g., intercellular adhesion molecule-1, vascular cell adhesion molecule-1). The constitutively expressed platelet endothelial cell adhesion molecule-1, already strongly expressed by endothelial cells lacking inflammatory stimuli, is localized at the cell-to-cell borders of endothelial cells and mediates a common final step in the extravasation of monocytes and neu-trophils during the inflammatory response from the vascular lumen through the endothelium. In addition, platelet-activating factor, released in response to endotoxin, is another mediator of considerable relevance for endotoxin-induced leukocyte recruitment into tissue in sepsis, leading to loss of fluid from the intravascular into the extravascular space, thus contributing to the progressive loss of circulating blood and, thereby, to a depression of cardiac output. Studies have demonstrated that this loss of fluid is not the result of changes in hydrostatic and/or osmotic pressures within the vascular compartment, but rather thebreakdown of endothelial barrier function, thus allowing emigration of fluid and macromolecules—including proteins—into the extravascular space. Separation of tight junctions between endothelial cells, influenced by inflammatory mediators and white blood cells, and dysfunction rather than destructive changes of endothelial cells leading to defects in endothelial cell volume regulation are discussed as the main underlying pathophysiological mechanisms. Two major pathways are involved in initiation of apoptosis in sepsis: a receptor-initiated caspase-8-mediated pathway and a mitochondrial-initiated caspase-9-mediated pathway. In vitro studies have revealed apoptotic cell death of endothelial cells in response to LPS and tumor necrosis factor-α, as well as to certain microorganisms. A number of studies suggest that endotoxin induces expression of antiapoptotic molecules in microvascular endothelial cells and neutrophils. The latter could play a role in the accumulation of neutrophils during sepsis, as well as in prolongation and/or augmentation of the inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rangel-Frausto MS, Pittet D, Costigan M, Hwang T, Davis CS, Wenzel RP (1995) The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA 273, 117–123.

    Article  PubMed  CAS  Google Scholar 

  2. Torpy JM (2002) New threats and old enemies: challenges for critical care medicine. JAMA 287, 1513–1515.

    Article  PubMed  Google Scholar 

  3. Baumgartner JD, Calandra T (1999) Treatment of sepsis: past and future avenues. Drugs 57, 127–132.

    Article  PubMed  CAS  Google Scholar 

  4. Ivanov AI, Patel S, Kulchitsky VA, Romanovsky AA (2003) Platelet-activating factor: a previously unrecognized mediator of fever. J Physiol 553, 221–228.

    Article  PubMed  CAS  Google Scholar 

  5. Kox WJ, Volk T, Kox SN, Volk HD (2000) Immunomodulatory therapies in sepsis. Intensive Care Med 26(Suppl 1), S124–S128.

    Article  PubMed  Google Scholar 

  6. Godshall CJ, Scott MJ, Burch PT, Peyton JC, Cheadle WG (2003) Natural killer cells participate in bacterial clearance during septic peritonitis through interactions with macrophages. Shock 19, 144–149.

    Article  PubMed  Google Scholar 

  7. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (1992) Definition for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20, 864–874.

    Google Scholar 

  8. Ayres SM (1985) SCCM’s new horizons conference on sepsis and septic shock. Crit Care Med 13, 864–866.

    Article  PubMed  CAS  Google Scholar 

  9. Balk RA, Bone RC (1989) The septic syndrome. Definition and clinical implications. Crit Care Clin 5, 1–8.

    PubMed  CAS  Google Scholar 

  10. Adrie C, Pinsky MR (2000) The inflammatory balance in human sepsis. Intensive Care Med 26, 364–375.

    Article  PubMed  CAS  Google Scholar 

  11. Hack CE, Zeerleder S (2001) The endothelium in sepsis: source of and a target for inflammation. Crit Care Med 29(Suppl 7), S21–S27.

    Article  PubMed  CAS  Google Scholar 

  12. Bone RC (1994) Sepsis and SIRS. Nephrol Dial Transplant 9(Suppl 4), 99–103.

    PubMed  Google Scholar 

  13. Bone RC (1994) Sepsis and its complications: the clinical problem. Crit Care Med 22, 8–11.

    Google Scholar 

  14. Weigand MA, Horner C, Bardenheuer HJ, Bouchon A (2004) The systemic inflammatory response syndrome. Best Pract Res Clin Anaesthesiol 18, 455–475.

    Article  PubMed  CAS  Google Scholar 

  15. Larmann J, Theilmeier G. Inflammatory response to cardiac surgery: cardiopul-monary bypass versus non-cardiopulmonary bypass surgery (2004) Best Pract Res Clin Anaesthesiol 18, 425–438.

    Google Scholar 

  16. Singer M, De Santis V, Vitale D, Jeffcoate W (2004) Multiorgan failure is an adaptive, endocrine-mediated, metabolic response to overwhelming systemic inflammation. Lancet 364, 545–548.

    Article  PubMed  Google Scholar 

  17. Bone RC (1996) Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med 24, 1125–1128.

    Article  PubMed  CAS  Google Scholar 

  18. Bone RC (1996) Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann Intern Med 125, 680–687.

    PubMed  CAS  Google Scholar 

  19. Ebnet K, Vestweber D (1999) Molecular mechanisms that control leukocyte extravasation: the selectins and the chemokines. Histochem Cell Biol 112, 1–23.

    Article  PubMed  CAS  Google Scholar 

  20. Czermak BJ, Breckwoldt M, Ravage ZB, et al. (1999) Mechanisms of enhanced lung injury during sepsis. Am J Pathol 154, 1057–1065.

    PubMed  CAS  Google Scholar 

  21. Kaplan RL, Sahn SA, Petty TL (1979) Incidence and outcome of respiratory distress syndrome in gram-negative sepsis. Arch Intern Med 139, 867–869.

    Article  PubMed  CAS  Google Scholar 

  22. Weiland JE, Davis WB, Holter JF, Mohammed JR, Dorinsky PM, Gadek JE (1986) Lung neutrophils in the adult respiratory distress syndrome. Clinical and pathophysiologic significance. Am Rev Respir Dis 133, 218–225.

    PubMed  CAS  Google Scholar 

  23. Ertel W, Morrison MH, Wang P, Zheng F, Ayala A, Chaudry ICH (1991) The complex patterns of cytokines in sepsis. Ann Surg 214, 141–148.

    Article  PubMed  CAS  Google Scholar 

  24. Thijs LG, Hack CE (1995) Time course of cytokine levels in sepsis. Intensive Care Med 21, 258–263.

    Article  Google Scholar 

  25. Tracey KJ, Lowry SF (1990) The role of cytokine mediators in septic shock. Adv Surg 23, 21–56.

    PubMed  CAS  Google Scholar 

  26. Walley KR, Lukacs NW, Standiford TJ, Strieter RM, Kunkel SL (1996) Balance of inflammatory cytokines related to severity and mortality of murine sepsis. Infect Immun 64, 4733–4738.

    PubMed  CAS  Google Scholar 

  27. Wichtermann KA, Bauer AE, Chaudry ICH (1980) Sepsis and shock: a review of laboratory models and a proposal. J Surg Res 29, 189–201.

    Article  Google Scholar 

  28. Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS, Gimbrone MA (1985) Inter-leukin 1 activation of vascular endothelium. Effects on procoagulant activity and leukocyte adhesion. Am J Pathol 121, 393–403.

    Google Scholar 

  29. Pober JS (1988) Cytokine-mediated activation of vascular endothelium. Am J Pathol 133, 426–433.

    PubMed  CAS  Google Scholar 

  30. Strieter RM, Kunkel SL (1994) Acute lung injury: the role of cytokines in the elic-itation of neutrophils. Journal Invest Med 42, 640–651.

    CAS  Google Scholar 

  31. Butcher EC (1991) Leukocyte-endothelial cell recognition: three (ore more) steps to specifity and diversity. Cell 67, 1033–1036.

    Article  PubMed  CAS  Google Scholar 

  32. Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 84, 2068–2101.

    PubMed  CAS  Google Scholar 

  33. Osborn L (1990) Leukocyte adhesion to endothelium in inflammation. Cell 62, 3–6.

    Article  PubMed  CAS  Google Scholar 

  34. Lukacs NW, Ward PA (1996) Inflammatory mediators, cytokines, and adhesion molecules in pulmonary inflammation and injury. Adv Immunol 62, 257–304.

    PubMed  CAS  Google Scholar 

  35. Springer TA (1990) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314.

    Article  Google Scholar 

  36. Tomczok J, Sliwa-Tomczok W, Klein CL, Bittinger F, Kirkpatrick CJ (1994) Application of immunogold labeling for light and electron microscopic localization of endothelial leukocyte adhesion molecule 1 (ELAM-1) on cultured human endothelial cells. Micron 25, 257–266.

    Article  PubMed  CAS  Google Scholar 

  37. Kapiotis S, Quehenberger P, Sengoelge G, Partan C, Eher R, Strobl H, et al. (1994) Modulation of pyrogen-induced upregulation of endothelial cell adhesion molecules (CAMs) by interleukin-4: transcriptional mechanisms and CAM-shedding. Circ Shock 43, 18–25.

    PubMed  CAS  Google Scholar 

  38. Chuang PI, Young BA, Thiagarajan RR, Cornejo C, Winn RK, Harlan JM (1997) Cytoplasmic domain of E-selectin contains a non-tyrosine endocytosis signal. J Biol Chem 272, 24,813–24,818.

    Article  PubMed  CAS  Google Scholar 

  39. Fries JWU, Williams AJ, Atkins RC, Newman W, Lipscomb MF, Collins T (1993) Expression of VCAM-1 and E-selectin in an in vivo model of endothelial activation. Am J Pathol 143, 725–737.

    PubMed  CAS  Google Scholar 

  40. Müller AM, Cronen C, Müller KM, Kirkpatrick C (1999) Comparative analysis of the reactivity of human umbilical vein endothelial cells in organ and monolayer culture. Pathobiology 67, 99–107.

    Article  PubMed  Google Scholar 

  41. Redl H, Dinges HP, Buurman WA, van der Linden CJ, Pober JS, Cotran RS, et al. (1991) Expression of endothelial leukocyte adhesion molecule-1 in septic but not traumatic/hypovolemic shock in the baboon. Am J Pathol 139, 461–466.

    PubMed  CAS  Google Scholar 

  42. Ishii H, Majerus PW (1985) Thrombomodulin is present in human plasma and urine. J Clin Invest 76, 2178–2181.

    PubMed  CAS  Google Scholar 

  43. Patrick D, Betts J, Frey EA, Prameya R, Dorovini-Zis K, Finlay BB (1992) Haemophilus influenzae lipopolysaccharide disrupts confluent monolayers of bovine brain endothelial cells via a serum-dependent cytotoxic pathway. J Infect Dis 165, 865–872.

    PubMed  CAS  Google Scholar 

  44. Gearing AJ, Newman W (1993) Circulating adhesion molecules in disease. Immunol Today 14, 506–512.

    Article  PubMed  CAS  Google Scholar 

  45. Myers CL, Wertheimer SJ, Schembri-King J, Parks T, Wallace RW (1992) Induction of ICAM-1 by TNF-alpha, IL-1 beta, and LPS in human endothelial cells after downregulation of PKC. Am J Physiol 263, C767–C772.

    PubMed  CAS  Google Scholar 

  46. Javaid K, Rahman A, Anwar KN, Frey RS, Minshall RD, Malik AB (2003) Tumor necrosis factor-alpha induces early-onset endothelial adhesivity by protein kinase Czeta-dependent activation of intercellular adhesion molecule-1. Circ Res 92, 1089–1097.

    Article  PubMed  CAS  Google Scholar 

  47. Raab M, Daxecker H, Markovic S, Karimi A, Griesmacher A, Mueller MM (2002) Variation of adhesion molecule expression on human umbilical vein endothelial cells upon multiple cytokine application. Clin Chim Acta 321, 11–16.

    PubMed  CAS  Google Scholar 

  48. van der Poll T, Coyle SM, Levi M, et al. (1997) Effect of a recombinant dimeric tumor necrosis factor receptor on inflammatory responses to intravenous endo-toxin in normal humans. Blood 89, 3727–3734.

    PubMed  Google Scholar 

  49. Collins T, Read MA, Neish AS, Whithley MZ, Thanos D, Maniatis T (1995) Tran-scriptional regulation of endothelial cell adhesion molecules: NF-κB and cytokine-nducible enhancers. FASEB 9, 899–909.

    CAS  Google Scholar 

  50. Patel KD, Cuvelier SL, Wiehler S (2002) Selectins: critical mediators of leukocyte recruitment. Semin Immunol 14, 73–81.

    Article  PubMed  CAS  Google Scholar 

  51. Müller AM, Cronen C, Müller KM, Kirkpatrick CJ (2002) Heterogeneous expression of cell adhesion molecules by endothelial cells in ARDS. J Pathol 198, 270–275.

    Article  PubMed  CAS  Google Scholar 

  52. Klein CL, Köhler H, Bittinger F, et al. (1994) Comparative studies on vascular endothelium in vitro. I: Cytokine effects on the expression of adhesion molecules by human umbilical vein, saphenous vein and femoral artery endothelial cells. Pathobiology 62, 199–208.

    PubMed  CAS  Google Scholar 

  53. Adamson P, Tighe M, Pearson JD (1996) Protein tyrosine kinase inhibitors act downstream of IL-1 alpha and LPS stimulated MAP-kinase phosphorylation to inhibit expression of E-selectin on human umbilical vein endothelial cells. Cell Adhes Commun 3, 511–525.

    PubMed  CAS  Google Scholar 

  54. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314.

    Article  PubMed  CAS  Google Scholar 

  55. Kuhns DB, Alvord WG, Gallin JI (1995) Increased circulating cytokines, cytokine antagonists, and E-selectin after intravenous administration of endotoxin in humans. J Infect Dis 171, 145–152.

    PubMed  CAS  Google Scholar 

  56. Huang K, Fishwild DM, Wu HM, Dedrick RL (1995) Lipopolysaccharide-induced E-selectin expression requires continuous presence of LPS and is inhibited by bactericidal/permeability-increasing protein. Inflammation 19, 389–404.

    Article  PubMed  CAS  Google Scholar 

  57. Tsokos M, Fehlauer F, Püschel K (2000) Immunohistochemical expression of e-selectin in sepsis-induced lung injury. Int J Legal Med 13, 338–342.

    Article  Google Scholar 

  58. Bevilacqua MP (1993) Endothelial-leukocyte adhesion molecules. Annu Rev Immunol 11, 767–804.

    Article  PubMed  CAS  Google Scholar 

  59. Klein CL, Bittinger F, Köhler H, et al. (1995) Comparative studies on vascular endothelium in vitro. Effects of cytokines on the expression of E-selectin, ICAM-1 and VCAM by cultured human endothelial cells obtained from different passages. Pathobiology 63, 83–92.

    PubMed  CAS  Google Scholar 

  60. Parrillo JE (1993) Pathogenetic mechanisms of septic shock. N Engl J Med 328, 1471–1477.

    Article  PubMed  CAS  Google Scholar 

  61. Bone RC (1991) The pathogenesis of sepsis. Ann Intern Med 115, 457–469.

    PubMed  CAS  Google Scholar 

  62. Tsouknos A, Nash GB, Rainger GE (2003) Monocytes initiate a cycle of leukocyte recruitment when cocultured with endothelial cells. Atherosclerosis 170, 49–58.

    Article  PubMed  CAS  Google Scholar 

  63. Müller AM, Cronen C, Kupferwasser LI, Oelert H, Müller KM, Kirkpatrick CJ (2000) Expression of endothelial cell adhesion molecules on heart valves: upreg-ulation in degeneration as well as acute endocarditis. J Pathol 191, 54–60.

    Article  PubMed  Google Scholar 

  64. Heckmann M, Douwes K, Peter R, Degitz K (1998) Vascular activation of adhesion molecule mRNA and cell surface expression by ionizing radiation. Exp Cell Res 238, 148–154.

    Article  PubMed  CAS  Google Scholar 

  65. Combe C, Dupla C, Couffinhal T, Moreau C, Bonnet J (1995) Induction of intercellular adhesion molecule-1 by monocyte adhesion to endothelial cells in human culture system. J Cell Physiol 164, 295–303.

    Article  PubMed  CAS  Google Scholar 

  66. Drake TA, Cheng J, Chang A, Taylor FB Jr (1993) Expression of tissue factor, thrombomodulin and E-selectin in baboons with lethal Escherichia coli sepsis. Am J Pathol 142, 1458–1470.

    PubMed  CAS  Google Scholar 

  67. Kayal S, Jaïs J-P, Aguini N, Chaudire J, Labrousse J (1998) Elevated circulating E-selectin, intercellular adhesion molecule 1, and von Willebrand factor in patients with severe infection. Am J Respir Crit Care Med 157, 776–784.

    PubMed  CAS  Google Scholar 

  68. Peters K, Unger RE, Brunner J, Kirkpatrick CJ (2003) Molecular basis of endothelial dysfunction in sepsis. Cardiovasc Res 60, 49–57.

    Article  PubMed  CAS  Google Scholar 

  69. Simmons DL, Walker C, Power C, Pigott R (1990) Molecular cloning of CD 31, a putative intercellular adhesion molecule closely related to carcinoembronic antigen. J Exp Med 171, 2147–2152.

    Article  PubMed  CAS  Google Scholar 

  70. DeLisser HM, Chilkotowsky J, Yan HC, Daise ML, Buck CA, Albelda SM (1994) Deletions in the cytoplasmic domain of platelet-endothelial cell adhesion molecule-1 (PECAM-1, CD 31) result in changes in ligand binding properties. J Cell Biol 124, 195–203.

    Article  PubMed  CAS  Google Scholar 

  71. Bogen S, Pak J, Garifallou M, Deng X, Müller WA (1994) Monoclonal antibody to murine PECAM-1 (CD 31) blocks acute inflammation in vivo. J Exp Med 1779, 1059–1064.

    Article  Google Scholar 

  72. Gibbs P, Berkley LM, Bolton EM, Briggs JD, Bradley JA (1993) Adhesion molecule expression (ICAM-1, VCAM-1, E-selectin and PECAM) in human kidney allografts. Transpl Immunol 1, 109–113.

    Article  PubMed  CAS  Google Scholar 

  73. Wong D, Dorovini-Zis K (1996) Platelet endothelial cell adhesion molecule-1 (PECAM-1) expression by human brain microvessel endothelial cells in primary culture. Brain Res 731, 217–220.

    Article  PubMed  CAS  Google Scholar 

  74. Henninger DD, Panes J, Eppihimer M, et al. (1997) Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol 158, 1825–1832.

    PubMed  CAS  Google Scholar 

  75. Romer LH, McLean NV, Yan HC, Daise M, Sun J, DeLisser HM (1995) IFN-gamma and TNF-alpha induce redistribution of PECAM-1 (CD 31) on human endothelial cells. J Immunol 154, 6582–6592.

    PubMed  CAS  Google Scholar 

  76. Stewart RJ, Kashxur TS, Marsden PA (1996) Vascular endothelial platelet endothelial adhesion molecule-1 (PECAM-1) expression is decreased by TNF-alpha and IFN-gamma. Evidence for cytokine-induced destabilization of messenger ribonucleic acid transcipts in bovine endothelial cells. J Immunol 156, 1221–1228.

    PubMed  CAS  Google Scholar 

  77. Gurubhagavatula I, Amrani Y, Pratico D, Ruberg FL, Albelda SM, Panettieri RA Jr (1998) Engagement of human PECAM-1 (CD31) on human endothelial cells increases intracellular calcium ion concentration and stimulates prostacyclin release. J Clin Invest 101, 212–222.

    PubMed  CAS  Google Scholar 

  78. Cuschieri J, Gourlay D, Garcia I, Jelacic S, Maier RV (2003) Modulation of endo-toxin-induced endothelial function by calcium/calmodulin-dependent protein kinase. Shock 20, 176–182.

    Article  PubMed  CAS  Google Scholar 

  79. Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD, Mathison JC, et al. (1990) Structure and function of lipopolysaccharide binding protein. Science 249, 1429–1431

    Article  PubMed  CAS  Google Scholar 

  80. El-Samalouti VT, Schletter J, Brade H, et al. (1997) Detection of lipopolysaccharide (LPS)-binding membrane proteins by immuno-coprecipitation with LPS and anti-LPS antibodies. Eur J Biochem 250, 418–424.

    Article  PubMed  CAS  Google Scholar 

  81. Fan X, Stelter F, Menzel R, et al. (1999) Structures in Bacillus subtilis are recognized by CD14 in a lipopolysaccharide binding protein-dependent reaction. Infect Immun 67, 2964–2968.

    PubMed  CAS  Google Scholar 

  82. Faure E, Equils O, Sieling PA, et al. (2000) Bacterial lipopolysaccharide activates NF-kappaB through toll-like receptor 4 (TLR-4) in cultured human dermal endothelial cells. Differential expression of TLR-4 and TLR-2 in endothelial cells. J Biol Chem. 275, 11058–11063.

    Article  PubMed  CAS  Google Scholar 

  83. Faure E, Thomas L, Xu H, Medvedev A, Equils O, Arditi M (2001) Bacterial lipopolysaccharide and IFN-gamma induce Toll-like receptor 2 and Toll-like receptor 4 expression in human endothelial cells: role of NF-kappa B activation. J Immunol 166, 2018–2024.

    PubMed  CAS  Google Scholar 

  84. Beutler B (2000) Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol 12, 20–26.

    Article  PubMed  CAS  Google Scholar 

  85. Underhill DM, Ozinsky A, Smith KD, Aderem A (1999) Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA 96, 14,459–14,463.

    Article  PubMed  CAS  Google Scholar 

  86. Reiling N, Holscher C, Fehrenbach A, et al. (2002) Cutting edge: Toll-like receptor (TLR)2-and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 169, 3480–3484.

    PubMed  CAS  Google Scholar 

  87. Hayashi F, Smith KD, Ozinsky A, et al. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103.

    Article  PubMed  CAS  Google Scholar 

  88. Hemmi H, Takeuchi O, Kawai T, et al. (2000) Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745.

    Article  PubMed  CAS  Google Scholar 

  89. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738.

    Article  PubMed  CAS  Google Scholar 

  90. Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ (2000) Cutting edge: repurifica-tion of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 165, 618–622.

    PubMed  CAS  Google Scholar 

  91. Song GY, Chung CS, Jarrar D, Cioffi WG, Ayala A (2002) Mechanism of immune dysfunction in sepsis: inducible nitric oxide-meditated alterations in p38 MAPK activation. J Trauma 53, 276–282.

    Article  PubMed  CAS  Google Scholar 

  92. Tamura DY, Moore EE, Johnson JL, Zallen G, Aiboshi J, Silliman CC (1998) p38 mitogen-activated protein kinase inhibition attenuates intercellular adhesion molecule-1 up-regulation on human pulmonary micro vascular endothelial cells. Surgery 124, 403–407.

    PubMed  CAS  Google Scholar 

  93. Liu SF, Ye X, Malik AB (1999) Pyrrolidine dithiocarbamate prevents I-kappaB degradation and reduces microvascular injury induced by lipopolysaccharide in multiple organs. Mol Pharmacol 55, 658–667.

    PubMed  CAS  Google Scholar 

  94. Wagner M, Klein CL, van Kooten TG, Kirkpatrick CJ (1998) Mechanisms of cell activation by heavy metal ions. J Biomed Mater Res 42, 443–452.

    Article  PubMed  CAS  Google Scholar 

  95. Moll T, Czyz M, Holzmuller H, et al. (1995) Regulation of the tissue factor promoter in endothelial cells. Binding of NF kappa B-, AP-1-, and Sp1-like transcription factors. J Biol Chem 270, 3849–3857.

    Article  PubMed  CAS  Google Scholar 

  96. Whiteside ST, Israel A (1997) I kappa B proteins: structure, function and regulation. Semin Cancer Biol 8, 75–82.

    Article  PubMed  CAS  Google Scholar 

  97. Kirkpatrick CJ, Bittinger F, Klein CL, Hauptmann S, Klosterhalfen B (1996) The role of the microcirculation in multiple organ dysfunction syndrome (MODS): a review and perspective. Virchows Arch 427, 461–476.

    Article  PubMed  CAS  Google Scholar 

  98. Anderson BO, Bensard DD, Harken AH (1991) The role of platelet activating factor and its antagonists in shock, sepsis and multiple organ failure. Surg Gynecol Obstet 172, 415–424.

    PubMed  CAS  Google Scholar 

  99. Schmidt W, Stenzel K, Gebhard MM, Martin E, Schmidt H (1999) C1-esterase inhibitor and its effects on endotoxin-induced leukocyte adherence and plasma extravasation in postcapillary venules. Surgery 125, 280–287.

    PubMed  CAS  Google Scholar 

  100. Eichhorn ME, Ney L, Suchner U, Goetz AE (1999) Impact of arachidonic acid on microhemodynamics and leukocyte adhesion in alveolar capillaries during endo-toxemia. Langenbecks Arch Chir I 115, 493–497.

    Google Scholar 

  101. Chien S, Chang C, Dellenback RJ, Usami S, Gregersen MI (1966) Hemodynamic changes in endotoxin shock. Am J Physiol 210, 1401–1410.

    PubMed  CAS  Google Scholar 

  102. Solomon LA, Hinshaw LB (1968) Effect of endotoxin on isogravimetric capillary pressure in the forelimb. Am J Physiol 214, 443–447.

    PubMed  CAS  Google Scholar 

  103. Blum MS, Toninelli E, Anderson JM, et al. (1997) Cytoskeletal rearrangement mediates human microvascular endothelial tight junction modulation by cytokines. Am J Physiol 273, H286–294.

    PubMed  CAS  Google Scholar 

  104. Bannerman DD, Fitzpatrick MJ, Anderson DY, et al. (1998) Endotoxin-neutraliz-ing protein protects against endotoxin-induced endothelial barrier dysfunction. Infect Immun 66, 1400–1407.

    PubMed  CAS  Google Scholar 

  105. Carden DL, Granger DN (2000) Pathophysiology of ischaemia-reperfusion injury. J Pathol 190, 255–266.

    Article  PubMed  CAS  Google Scholar 

  106. Voss BL, De Bault LE, Blick KE, et al. (1991) Sequential renal alterations in septic shock in the primate. Circ Shock 33, 142–155.

    PubMed  CAS  Google Scholar 

  107. Rafi AQ, Zeytun A, Bradley MJ, et al. (1998) Evidence for the involvement of Fas ligand and perforin in the induction of vascular leak syndrome. J Immunol 161, 3077–3086.

    PubMed  CAS  Google Scholar 

  108. Bannerman DD, Sathyamoorthy M, Goldblum SE (1998) Bacterial lipopolysac-charide disrupts endothelial monolayer integrity and survival signaling events through caspase cleavage of adherens junction proteins. J Biol Chem 273, 35,371–35,380.

    Article  PubMed  CAS  Google Scholar 

  109. Gross PL, Aird WC (2000) The endothelium and thrombosis. Semin Thromb Hemost 26, 463–478.

    Article  PubMed  CAS  Google Scholar 

  110. Rosenberg RD, Aird WC (1999) Vascular bed-specific hemostasis and hypercoag-ulable states. N Engl J Med 340, 1555–1564.

    Article  PubMed  CAS  Google Scholar 

  111. Aird WC (2001) Vascular bed-specific hemostasis: role of endothelium in sepsis pathogenesis. Crit Care Med 29, S28–34.

    Article  PubMed  CAS  Google Scholar 

  112. Aird WC (2002) Endothelial cell dynamics and complexity theory. Crit Care Med 30,5 Suppl.: S180–S185.

    Article  PubMed  CAS  Google Scholar 

  113. Müller AM, Skrzynski C, Skipka G, Müller KM (2002) Expression of von Wille-brand factor by human pulmonary endothelial cells in vivo. Respiration 69, 526–533.

    Article  PubMed  Google Scholar 

  114. Müller AM, Nesslinger M, Skipka G, Müller KM (2002) Expression of CD34 in pulmonary endothelial cells in vivo. Pathobiology 70, 11–17.

    Article  PubMed  CAS  Google Scholar 

  115. Iskit AB, Sungur A, Gedikoglu G, Guc MO (1999) The effects of bosentan, aminoguanidine and L-canavanine on mesenteric blood flow, spleen and liver in endotoxaemic mice. Eur J Pharmacol 379, 73–80.

    Article  PubMed  CAS  Google Scholar 

  116. Kavuklu B, Iskit AB, Guc MO, Ilhan M, Sayek I (2000) Aminoguanidine attenuates endotoxin-induced mesenteric vascular hyporeactivity. Br J Surg 87, 448–453

    Article  PubMed  CAS  Google Scholar 

  117. Baykal A, Kavuklu B, Iskit AB, Guc MO, Hascelik G, Sayek I (2000) Experimental study of the effect of nitric oxide inhibition on mesenteric blood flow and inter-leukin-10 levels with a lipopolysaccharide challenge. World J Surg 24, 1116–1120.

    Article  PubMed  CAS  Google Scholar 

  118. Baykal A, Iskit AB, Hamaloglu E, Oguz Guc M, Hascelik G, Sayek I (2000) Mela-tonin modulates mesenteric blood flow and TNFalpha concentrations after lipopolysaccharide challenge. Eur J Surg 166, 722–727.

    Article  PubMed  CAS  Google Scholar 

  119. Kubli S, Boegli Y, Ave AD, et al. (2003) Endothelium-dependent vasodilation in the skin microcirculation of patients with septic shock. Shock 19, 274–280.

    Article  PubMed  Google Scholar 

  120. Feuerhake F, Fuchsl G, Bals R, Welsch U (1998) Expression of inducible cell adhesion molecules in the normal human lung: immunohistochemical study of their distribution in pulmonary blood vessels. Histochem Cell Biol 110, 387–394.

    Article  PubMed  CAS  Google Scholar 

  121. Eppihimer MJ, Wolitzky B, Anderson DC, Labow MA, Granger DN (1996) Heterogeneity of expression of e-and P-selectins in vivo. Circ Res 79, 560–569.

    PubMed  CAS  Google Scholar 

  122. Doerschuk CM, Beyers N, Coxson HO, Wiggs BR, Hogg JC (1993) The importance of neutrophil and capillary diameter in the margination of PMN in the lung. J Appl Physiol 74, 3040–3045.

    PubMed  CAS  Google Scholar 

  123. Pearson JD (1999) Endothelial cell function and thrombosis. Baillieres Best Pract Res Clin Haematol 12, 329–341.

    Article  PubMed  CAS  Google Scholar 

  124. Yamamoto K, Loskutoff DJ (1996) Fibrin deposition in tissues from endotoxin-treated mice correlates with decreases in the expression of urokinase-type but not tissue-type plasminogen activator. J Clin Invest 97, 2440–2451.

    Article  PubMed  CAS  Google Scholar 

  125. Farquhar I, Martin CM, Lam C, Potter R, Ellis CG, Sibbald WJ (1996) Decreased capillary density in vivo in bowel mucosa of rats with normotensive sepsis. J Surg Res 61, 190–196.

    Article  PubMed  CAS  Google Scholar 

  126. Yan SF, Tritto I, Pinsky D, et al. (1995) Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. J Biol Chem 270, 11,463–11,471.

    Article  PubMed  CAS  Google Scholar 

  127. Caplan MS, Adler L, Kelly A, Hsueh W (1992) Hypoxia increases stimulus-induced PAF production and release from human umbilical vein endothelial cells. Biochim Biophys Acta 1128, 205–210.

    PubMed  CAS  Google Scholar 

  128. Ogawa S, Shreeniwas R, Brett J, Clauss M, Furie M, Stern DM (1990) The effect of hypoxia on capillary endothelial cell function: modulation of barrier and coagulant function. Br J Haematol 75, 517–524.

    PubMed  CAS  Google Scholar 

  129. Yamamoto K, de Waard V, Fearns C, Loskutoff DJ (1998) Tissue distribution and regulation of murine von Willebrand factor gene expression in vivo. Blood 92, 2791–2801.

    PubMed  CAS  Google Scholar 

  130. Thiemermann C, Vane J (1990) Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur J Pharmacol 182, 591–595.

    Article  PubMed  CAS  Google Scholar 

  131. Julou-Schaeffer G, Gray GA, Fleming I, Schott C, Parratt JR, Stoclet JC (1990) Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol 259, H1038–1043.

    PubMed  CAS  Google Scholar 

  132. Guc MO, Furman BL, Parratt JR (1990) Endotoxin-induced impairment of vaso-pressor and vasodepressor responses in the pithed rat. Br J Pharmacol 101, 913–919

    PubMed  CAS  Google Scholar 

  133. Kilbourn RG (1998) The discovery of nitric oxide as a key mediator in septic shock. Sepsis 1, 85–91.

    Article  Google Scholar 

  134. Hu X, Yee E, Harlan JM, Wong F, Karsan A (1998) Lipopolysaccharide induces the antiapoptotic molecules, A1 and A20, in micro vascular endothelial cells. Blood 92, 2759–2765.

    PubMed  CAS  Google Scholar 

  135. Roy S, Nicholson DW (2000) Cross-talk in cell death signaling. J Exp Med 192, F21–25.

    Article  PubMed  CAS  Google Scholar 

  136. Robaye B, Mosselmans R, Fiers W, Dumont JE, Galand P (1991) Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. Am J Pathol 138, 447–453.

    PubMed  CAS  Google Scholar 

  137. Frey EA, Finlay BB (1998) Lipopolysaccharide induces apoptosis in a bovine endothelial cell line via a soluble CD 14 dependent pathway. Microb Pathog 24, 101–109.

    Article  PubMed  CAS  Google Scholar 

  138. Sylte MJ, Corbeil LB, Inzana TJ, Czuprynski CJ (2001) Haemophilus somnus induces apoptosis in bovine endothelial cells in vitro. Infect Immun 69, 1650–1660.

    Article  PubMed  CAS  Google Scholar 

  139. Menzies BE, Kourteva I (1998) Internalization of Staphylococcus aureus by endothelial cells induces apoptosis. Infect Immun 66, 5994–5998.

    PubMed  CAS  Google Scholar 

  140. Harter L, Keel M, Steckholzer U, Ungethuem U, Trentz O, Ertel W (2002) Activation of mitogen-activated protein kinases during granulocyte apoptosis in patients with severe sepsis. Shock 18, 401–406.

    Article  PubMed  Google Scholar 

  141. Hotchkiss RS, Dunne WM, Swanson PE, et al. (2001) Role of apoptosis in Pseudomonas aeruginosa pneumonia. Science 294, 1783.

    Article  PubMed  CAS  Google Scholar 

  142. Tsokos M, Mack D, Püschel K (2002) Postmortale bakteriologische Diagnostik. Entnahmetechnik, Untersuchungsmaterial, limitierende Faktoren, diagnostische Wertigkeit und Interpretation. Rechtsmedizin 12, 59–64.

    Article  Google Scholar 

  143. O’Boyle CJ, MacFie J, Mitchell CJ, Johnstone D, Sagar PM, Sedman PC (1998) Microbiology of bacterial translocation in humans. Gut 42, 29–35.

    Article  PubMed  CAS  Google Scholar 

  144. Woodcock NP, Robertson J, Morgan DR, Gregg KL, Mitchell CJ, MacFie J (2001) Bacterial translocation and immunohistochemical measurement of gut immune function. Clin Pathol 54, 619–623.

    Article  CAS  Google Scholar 

  145. Tsokos M, Püschel K (1999) Iatrogenic Staphylococcus aureus septicaemia following intravenous and intramuscular injections: clinical course and pathomor-phological findings. Int J Legal Med 112, 303–308.

    Article  PubMed  CAS  Google Scholar 

  146. Heinemann A, Tsokos M, Püschel K (2003) Medicolegal aspects of pressure sores Leg Med 5(Suppl 1), S263–S266.

    Google Scholar 

  147. Tsokos M (2002) Pathology of sepsis. Part I: Forensic problems arising in the postmortem diagnosis of death due to sepsis. Jpn J Forens Pathol 8, 72–77.

    Google Scholar 

  148. Sperhake JP, Tsokos M (2004) Pathological features of Waterhouse-Friderichsen syndrome in infancy and childhood. In Tsokos M, ed., Forensic Pathology Reviews, Vol. 1. Humana Press, Totowa, NJ, pp. 219–231.

    Google Scholar 

  149. Dashefsky B, Teele DW, Klein JO (1983) Unsuspected meningococcemia. J Pedi-atr 102, 69–72.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Müller, A.M., Tsokos, M. (2006). Pathology of Human Endothelium in Septic Organ Failure. In: Tsokos, M. (eds) Forensic Pathology Reviews. Forensic Pathology Reviews, vol 4. Humana Press. https://doi.org/10.1007/978-1-59259-921-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-921-9_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-601-6

  • Online ISBN: 978-1-59259-921-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics