Skip to main content

Basal Ganglia and Extrapyramidal System

  • Chapter
The Human Nervous System
  • 4528 Accesses

Abstract

The cerebrum exerts control of voluntary somatic motor activity through several descending pathways. The direct pathway is via the pyramidal system, which includes the corticospinal (pyramidal) tract together with fibers that diverge from it to innervate cranial nerve motoneurons, the corticobulbar tract (see Fig. 24.1). The cortical neurons that form the tract are upper motoneurons. There are two other major descending pathways that arise from the cortex: the corticorubral/rubrospinal tract and the corticoreticular/reticulospinal tract, but these are less direct. They involve a synapse in the red nucleus and in the reticular formation of the lower brainstem, respectively. Before evolution of the cerebral cortex in mammals, voluntary somatic motor activity was mainly mediated by upper motoneurons in the red nucleus and the brainstem reticular formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Readings

  • Aizman O, Brismar H, Uhlen P, et al. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nature Neurosci. 2000;3:226–230.

    Article  PubMed  CAS  Google Scholar 

  • Bates G, Harper PS, Jones L. Huntington’s Disease. New York: Oxford University Press; 2002.

    Google Scholar 

  • Brady AM, O’Donnell P. Dopaminergic modulation of prefrontal cortical input to nucleus accumbens neurons in vivo. J. Neurosci. 2004;24:1040–1049.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR. D1 dopamine receptor supersensitivity in the dopamine-depleted striatum animal model of Parkinson’s disease. Neuroscientist 2003;9:455–462.

    Article  PubMed  CAS  Google Scholar 

  • Guzman JN, Hernandez A, Galarraga E, et al. Dopaminergic modulation of axon collaterals interconnecting spiny neurons of the rat striatum. J. Neurosci. 2003;23:8931–8940.

    PubMed  CAS  Google Scholar 

  • Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 2000;20:2369–2382.

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y. Neostriatal cell subtypes and their functional roles. Neurosci. Res. 1997;27:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Kelly RM, Strick PL. Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog. Brain Res. 2004;143:449–459.

    PubMed  Google Scholar 

  • Luo J, Kaplitt MG, Fitzsimons HL, et al. Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science 2002;298:425–429.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura M, Kojima J. The role of the pedunculopontine tegmental nucleus in experimental parkinsonism in primates. Stereotact. Funct. Neurosurg. 2001;77:108–115.

    Article  PubMed  CAS  Google Scholar 

  • Obeso JA. The Basal Ganglia and New Surgical Approaches for Parkinson’s Disease. Philadelphia, PA: Lippincott-Raven; 1997.

    Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Rodriguez M, Arbizu J, Gimenez-Amaya JM. The basal ganglia and disorders of movement: pathophysiological mechanisms. News Physiol. Sci. 2002;17:51–55.

    PubMed  Google Scholar 

  • Onn SP, West AR, Grace AA. Dopamine-mediated regulation of striatal neuronal and network interactions. Trends Neurosci. 2000;23:S48–S56.

    Article  PubMed  CAS  Google Scholar 

  • Parent A, Levesque M, Parent M. A re-evaluation of the current model of the basal ganglia. Parkinsonism Relat Disord. 2001;7:193–198.

    Article  PubMed  Google Scholar 

  • Plenz D. When inhibition goes incognito: feedback interaction between spiny projection neurons in striatal function. Trends Neurosci. 2003;26:436–443.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds JN, Wickens JR. Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw. 2002;15:507–521.

    Article  PubMed  Google Scholar 

  • Rodriguez-Oroz MC, Rodriguez M, Guridi J, et al. The subthalamic nucleus in Parkinson’s disease: somatotopic organization and physiological characteristics. Brain 2001;124:1777–1790.

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Gerfen CR. Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp. Brain Res. 1998;123:60–76.

    Article  PubMed  CAS  Google Scholar 

  • Tunstall MJ, Oorschot DE, Kean A, Wickens JR. Inhibitory interactions between spiny projection neurons in the rat striatum. J. Neurophysiol. 2002;88:1263–1269.

    PubMed  Google Scholar 

  • West AR, Floresco SB, Charara A, Rosenkranz JA, Grace AA. Electrophysiological interactions between striatal glutamatergic and dopaminergic systems. Ann. NY Acad. Sci. 2003;1003:53–74.

    Article  PubMed  CAS  Google Scholar 

  • Wichmann T, DeLong MR. Functional neuroanatomy of the basal ganglia in Parkinson’s disease. Adv. Neurol. 2003;91:9–18.

    PubMed  Google Scholar 

  • Wise SP, Murray EA, Gerfen CR. The frontal cortex-basal ganglia system in primates. Crit. Rev. Neurobiol. 1996;10:317–356.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

(2005). Basal Ganglia and Extrapyramidal System. In: The Human Nervous System. Humana Press. https://doi.org/10.1007/978-1-59259-730-7_24

Download citation

Publish with us

Policies and ethics