Skip to main content

Neural Stem Cells for Transplantation

  • Protocol
  • 349 Accesses

Part of the book series: Neuromethods ((NM,volume 36))

Abstract

Neural stem cell (NSC) biology has generated a great deal of interest in recent years. It can inform on both intrinsic and extrinsic processes that underlie cell diversity within the central nervous system (CNS), and is a powerful method for improving understanding of cell ancestry and potential. An extension of this knowledge is apparent in applied neuroscience, in which defined stem-cell-derived populations offer vast therapeutic potential in the management of human CNS disease. Cells can now be isolated from the developing or adult rodent CNS, and expanded in culture, while retaining the capacity for differentiation into a wide variety of cellular phenotypes. In many cases, these may represent the founders of the CNS: multipotent NSCs (McKay, 1997). Similar cells may also be isolated from human primary fetal tissues. Ethical and practical constraints on the procurement of viable human tissue emphasizes the worth of NSCs in providing an plentiful alternative source of human neural cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Ahmed, S., Reynolds, B. A., and Weiss, S. (1995) BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J. Neurosci. 15, 5765–5778.

    PubMed  CAS  Google Scholar 

  • Arsenijevic, Y. and Weiss, S. (1998) Insulin-like growth factor-I is a differentiation factor for postmitotic CNS stem cell-derived neuronal precursors: distinct actions from those of brain-derived neurotrophic factor. J. Neurosci. 18, 2118–2128.

    PubMed  CAS  Google Scholar 

  • Brustle, O., Choudhary, K., Karram, K., Huttner, A., Murray, K., Dubois-Dalcq, M., and McKay, R. D. (1998) Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats. Nat. Biotechnol. 16, 1040–1044.

    Article  PubMed  CAS  Google Scholar 

  • Caldwell, M. A. and Svendsen, C. N. (1998) Heparin, but not other proteoglycans potentiates the mitogenic effects of FGF-2 on mesencephalic precursor cells. Exp. Neurol. 152,1–10.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, M. K., Cui, X., Hu, Z. Y., Jackson, J., Sherman, S., Seiger, A., and Whalberg, L. (1999) In vitro expansion of a multipotent population of human neural progenitor cells. Exp. Neurol. 158, 265–278.

    Article  PubMed  CAS  Google Scholar 

  • Cepko, C. L., Ryder, E., Austin, C., Golden, J., Fields-Berry, S., and Lin, J. (1998) Lineage analysis using retroviral vectors. Methods 14, 393–406.

    Article  PubMed  CAS  Google Scholar 

  • Chalmers-Redman, R. M., Priestley, T., Kemp, J. A., and Fine, A. (1997) In vitro propagation and inducible differentiation of multipotential progenitor cells from human fetal brain. Neuroscience 76, 1121–1128.

    Article  PubMed  CAS  Google Scholar 

  • Ciccolini, F. and Svendsen, C. N. (1998) Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J. Neurosci. 18, 7869–7880.

    PubMed  CAS  Google Scholar 

  • Davis, A. A. and Temple, S. (1994) Self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372, 263–266.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S. B. and Björklund, A. (1992) Staging and dissection of rat embryos, in Neural Transplantation (Dunnett, S. B. and Björklund, A., eds.), Oxford, IRL, pp. 1–18.

    Google Scholar 

  • Flax, J. D., Aurora, S., Yang, C., Simonin, C., Wills, A. M., Billinghurst, L. L., Jendoubi, M., Sidman, R. L., Wolfe, J. H., Kim, S. U., and Snyder, E. Y. (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotechnol. 16, 1033–1039.

    Article  PubMed  CAS  Google Scholar 

  • Gaiano, N. and Fishell, G. (1998) Transplantation as a tool to study progenitors within the vertebrate nervous system. J. Neurobiol. 36, 152–161.

    Article  PubMed  CAS  Google Scholar 

  • Gallo, V. and Armstrong, R. C. (1995) Developmental and growth factor-induced regulation of nestin in oligodendrocyte lineage cells. J. Neurosci. 15, 394–406.

    PubMed  CAS  Google Scholar 

  • Ginty, D. D., Kornhauser, J. M., Thompson, M. A., Bading, H., Mayo, K. E., Takahashi, J. S., and Greenberg, M. E. (1993) Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260, 238–241.

    Article  PubMed  CAS  Google Scholar 

  • Kalyani, A., Hobson, K., and Rao, M. S. (1997) Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterisation, and clonal analysis. Dev. Biol. 186, 202–223.

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick, T. J. and Bartlett, P. F. (1995) Cloned multipotential precursors from the mouse cerebrum require FGF-2, whereas glial restricted precursors are stimulated with either FGF-2 or EGF. J. Neurosci. 15, 3653–3661.

    PubMed  CAS  Google Scholar 

  • Lendahl, U., Zimmerman, L. B., and McKay, R. D. (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595.

    Article  PubMed  CAS  Google Scholar 

  • Lillien, L. and Cepko, C. (1992) Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGF alpha. Development 115, 253–266.

    PubMed  CAS  Google Scholar 

  • Marshall, C. J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80, 179–185.

    Article  PubMed  CAS  Google Scholar 

  • McKay, R. (1997) Stem cells in the central nervous system. Science 276, 66–71.

    Article  PubMed  CAS  Google Scholar 

  • Olsson, M., Bjerregaard, K., Winkler, C., Gates, M., Björklund, A., and Campbell, K. (1998) Incorporation of mouse neural progenitors transplanted into the rat embryonic forebrain is developmentally regulated and dependent on regional and adhesive properties. Eur. J. Neurosci. 10, 71–85.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, T. D., Ray, J., and Gage, F. H. (1995) FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell Neurosci. 6, 474–486.

    Article  PubMed  CAS  Google Scholar 

  • Ray, J., Peterson, D. A., Schinstine, M., and Gage, F. H. (1993) Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc. Natl. Acad. Sci. USA 90, 3602–3606.

    Article  PubMed  CAS  Google Scholar 

  • Ray, J., Raymon, H. K., and Gage, F. H. (1995) Generation and culturing of precursor cells and neuroblasts from embryonic and adult central nervous system. Methods Enzymol. 254, 20–37.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, B. A. and Weiss, S. (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Rosser, A. E., Tyers, P., ter Borg, M., Dunnett, S. B., and Svendsen, C.N. (1997) Co-expression of MAP-2 and GFAP in cells developing from rat EGF-responsive precursor cells. Dev. Brain Res. 98, 291–295.

    Article  CAS  Google Scholar 

  • Sabaté, O., Horellou, P., Vigne, E., Colin, P., Perricaudet, M., Buc-Caron, M. H., and Mallet, J. (1995) Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses. Nat. Genet. 9, 256–260.

    Article  PubMed  Google Scholar 

  • Sakakibara, S., Imai, T., Hamaguchi, K., Okabe, M., Aruga, J., Nakajima, K., Yasutomi, D., Nagata, T., Kurihara, Y., Uesugi, S., Miyata, T., Ogawa, M., Mikoshiba, K., and Okano, H. (1996) Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev. Biol. 176, 230–242.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Q., Qian, X., Capela, A., and Temple, S. (1998) Stem cells in the embryonic cerebral cortex: their role in histogenesis and patterning. J. Neurobiol. 36, 162–174.

    Article  PubMed  CAS  Google Scholar 

  • Stemple, D. L. and Anderson, D. J. (1992) Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71, 973–985.

    Article  PubMed  CAS  Google Scholar 

  • Suhonen, J. O., Peterson, D. A., Ray, J., and Gage, F. H. (1996) Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383, 624–627.

    Article  PubMed  CAS  Google Scholar 

  • Svendsen, C. N., Armstrong, R. J., Rosser, A. E., Chandran, S., Ostenfeld, T., and Caldwell, M. A. (1998) New method for the rapid and long term growth of human neural precursor cells. J. Neurosci. Methods 85, 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Svendsen, C. N., Caldwell, M. A., Shen, J., ter Borg, M. G., Rosser, A. E., Tyers, P., Karmiol, S., and Dunnett, S. B. (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp. Neurol. 148, 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Svendsen, C. N., Fawcett, J. W., Bentlage, C, and Dunnett, S. B. (1995) Increased survival of rat EGF-generated CNS precursor cells using B27 supplemented medium. Exp. Brain Res. 102, 407–414.

    Article  PubMed  CAS  Google Scholar 

  • Svendsen, C. N., Skepper, J., Rosser, A. E., ter Borg, M. G., Tyers, P., and Ryken, T. (1997) Restricted growth potential of rat neural precursors as compared to mouse. Dev. Brain Res. 99, 253–258.

    Article  CAS  Google Scholar 

  • Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A. C., and Reynolds, B. A. (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuraxis. J. Neurosci. 16, 7599–7609.

    PubMed  CAS  Google Scholar 

  • Winkler, C., Fricker, R. A., Gates, M. A., Olsson, M., Hammang, J. P., Carpenter, M. K., and Björklund, A. (1998) Incorporation and glial differentiation of mouse EGF-responsive neural progenitor cells after transplantation into the embryonic rat brain. Mol. Cell Neurosci. 11, 99–116.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Chandran, S., Svendsen, C.N. (2000). Neural Stem Cells for Transplantation. In: Dunnett, S.B., Boulton, A.A., Baker, G.B. (eds) Neural Transplantation Methods. Neuromethods, vol 36. Humana Press. https://doi.org/10.1007/978-1-59259-690-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-690-4_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-793-9

  • Online ISBN: 978-1-59259-690-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics