Skip to main content

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The three-dimensional arrangement of ammo acids in a protein dictates its biological properties One of the urgent challenges of modern biology is to decipher the relationship between the linear sequence of ammo acids and the conformation adopted by proteins Success is predicting protein conformation from the primary structure can be anticipated to permit rational design of therapeutic formulations to treat intractable human diseases and of probes for research in fundamental biological problems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeGrado, W F, Wasserman, Z R, and Lear, J D (1989) Protem design, a minimalist approach Science 243, 622–628

    PubMed  CAS  Google Scholar 

  2. Sander, C (1994) Structural design of proteins, in Concepts in Protein Engineering and Design An Introduction (Wrede, P and Schneider, G, eds), Walter de Gruyter, New York,pp 209–236

    Google Scholar 

  3. Engel, M, William, S R, and Erickson, B (1991) Designed coiled-coil proteins synthesis and spectroscopy of two 78-residue a-hehcal dimers Biochemistry 30, 3161–3169

    PubMed  CAS  Google Scholar 

  4. Regan, L and DeGrado, W F(1988) Characterization of a helical protein designed from first principles Science 241, 976–978

    PubMed  CAS  Google Scholar 

  5. Davies, D R, Padlan, E A, and Sheriff, S (1990) Antibody-antigen complexes Ann Rev Biochem 59, 439–474

    PubMed  CAS  Google Scholar 

  6. Novotny, J, Bruccolen, R E, and Saul, F A (1989) On the attribution of binding energy in antigen-antibody complexes McPc 603, Dl 3 and HyHel-5 Biochemistry 28, 4735–4749

    PubMed  CAS  Google Scholar 

  7. Wdthrich, K (1989) Protein structure determination in solution by nuclear magnetic resonance spectroscopy Science 243, 45–50

    Google Scholar 

  8. Hirs, C H W and Timasheff, S N (eds) (1986) Methods in Enzymology, Vol 130, Enzyme Structure, Part K Academic, New York

    Google Scholar 

  9. Webster, D M and Rees, A R (1995) Molecular modeling of antibody-combining sites, in Methods in Molecular Biology, vol 51 Antibody Engineering Protocols (Paul, S, ed), Humana, Totowa, NJ, pp 17–49

    Google Scholar 

  10. Lundbland, R and Noyes, C M (1984) Chemical Reagents for Protein Modification, Vols I and II CRC, Boca Raton, FL

    Google Scholar 

  11. Wong, S S (1991) Chemistry of Protein Conjugation and Cross-Linking CRC, Boca Raton, FL

    Google Scholar 

  12. Weir, M, Herzenberg, L A, Blackwell, C, and Herzenberg, L A (eds) (1986) Handbook of Experimental Immunology Blackwell, Oxford, UK

    Google Scholar 

  13. Kohler, G and Milstein, C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity Nature 256, 495–497

    PubMed  CAS  Google Scholar 

  14. Marks, J D, Hoogenboom, H R, Borniert, T P, McCafferty, J, Griffiths, A D, and Winter, G (1991) By-passing immunization Human antibodies from V-gene libraries displayed on phage J Mol Biol 222, 581–597

    PubMed  CAS  Google Scholar 

  15. Clackson, T, Hoogenboom, H R, Griffiths, A D, and Winter, G (1991) Making antibody fragments using phage display libraries Nature 352, 624–628

    PubMed  CAS  Google Scholar 

  16. Jerne, N K, Roland, J, and Cazenave, P A (1982) Recurrent idiotypes and internal images EMBO J 1, 243–247

    PubMed  CAS  Google Scholar 

  17. Glasel, J A and Agarwal, D (1995) Anti-idiotypic antibodies that mimic opioids, in Methods in Molecular Biology, vol 51 Antibody Engineering Protocols (Paul, S, ed), Humana, Totowa, NJ, pp 183–201

    Google Scholar 

  18. Somjen, D, Amir-Zaltsman, Y, Gayer, B, Mor, G, Jaccard, N, Weisman, Y, Barnard, G, and Kohen, F (1995) Anti-idiotypic antibody as an oestrogen mimetic removal of Fc fragment converts agonist to antagonist J Endocrinol 145, 409–416

    PubMed  CAS  Google Scholar 

  19. Izadyar, L, Friboulet, A, Remy, M H, Roseto, A, and Thomas, D (1993) Monoclonal anti-idiotypic antibodies as functional internal images of enzymes active sites production of a catalytic antibody with a chohnesterase activity Proc Nat I Acad Sci USA 90, 8876–8880

    CAS  Google Scholar 

  20. Costagliola, S, Ruf, J, Durand-Gorde, M J, and Carayon, P (1991) Monoclonal antiidiotypic antibodies interact with the 93 kilodalton thyrotropin receptor and exhibit heterogeneous biological activities Endocrinology 128, 1555–1562

    PubMed  CAS  Google Scholar 

  21. Tramontano, A, Janda, K D, and Lerner, R A (1986) Catalytic antibodies Science 234, 1566–1570

    PubMed  CAS  Google Scholar 

  22. Pollack, S J, Jacobs, J. W, and Schultz, P G. (1986) Selective chemical catalysis by an antibody Science 234, 1570–1573

    PubMed  CAS  Google Scholar 

  23. Stewart, J D and Benkovic, S J (1995) Transition-state stabilization as a measure of the efficiency of antibody catalysis Nature 375, 388–391

    PubMed  CAS  Google Scholar 

  24. Kraut, J (1988) How do enzymes work? Science 242, 533–540

    PubMed  CAS  Google Scholar 

  25. Paul, S, Volle, D J, Beach, C M, Johnson, D R, Powell, M J, and Massey, R J (1989) Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody Science 244, 1158–1162

    PubMed  CAS  Google Scholar 

  26. Shuster, A M, Gololobov, G V, Kvashuk, O A, Bogomolova, A E, Smirnov, I V, and Gabibov, A G (1992) DNA hydrolyzing autoantibodies Science 256, 665–667

    PubMed  CAS  Google Scholar 

  27. Li, L, Paul, S, Tyutyulkova, S, Kazatchkine, M, and Kaven, S (1995) Catalytic activity of anti-thyroglobulin antibodies J Immunol 154, 3328–3332

    PubMed  CAS  Google Scholar 

  28. Kalaga, R, Li, L, O’Dell, J, and Paul, S (1995) Unexpected presence of polyreactive catalytic antibodies in IgG from unimmunized donors and decreased levels in rheumatoid arthritis J Immunol 155, 2695–2702

    PubMed  CAS  Google Scholar 

  29. Sun, M, Mody, B, Eklund, S H, and Paul, S (1991) Vasoactive intestinal peptide hydrolysis by antibody light chains J Biol Chem 266, 15,571–15,574

    Google Scholar 

  30. Gao, Q S, Sun, M, Tyutyulkova, S, Webster, D, Rees, A, Tramontano, A, Massey, R, and Paul, S (1994) Molecular cloning of a proteolytic antibody light chain J Biol Chem 269, 32,389–32,393

    PubMed  CAS  Google Scholar 

  31. Takagi, M, Kohda, K, Hamuro, T, Harada, A, Yamaguchi, H, Kamachi, M, and Imanaka, T (1995) Thermostable peroxidase activity with a recombinant antibody L chain-porphyrin Fe(III) complex FEBS Lett 375, 273–276

    PubMed  CAS  Google Scholar 

  32. Gao, Q S, Sun, M, Rees, A, and Paul, S (1995) Site-directed mutagenesis of proteolytic antibody light chain J Mol Biol 253, 658–664

    PubMed  CAS  Google Scholar 

  33. Khalaf, A I, Proctor, G R, Suckling, C J, Bence, L H, Irvine, J I, and Stimson, W H (1992) Remarkably efficient hydrolysis of a 4-nitrophenylester by a catalytic antibody raised to an ammonium hapten J Chem Soc (Perkin 1) 1, 1475–1481

    Google Scholar 

  34. Marks, J D, Tristem, M, Karpas, A, and Winter, G (1991) Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family-specific ohgonucleotide probes Eur J Immunol 21, 985–991

    PubMed  CAS  Google Scholar 

  35. Deng, S, MacKenzie, C R, and Narang, S A (1995) Synthetic antibody gene libraries for in vitro affinity maturation, in Methods in Molecular Biology, vol 51 Antibody Engineering Protocols (Paul, S, ed), Humana, Totowa, NJ, pp 329–342

    Google Scholar 

  36. Glockshuber, R, Schmidt, T, and Pluckthun, A (1992) The disulfide bonds in antibody variable domains effects on stability, folding in vitro, and functional expression in Eschenchia coli Biochemistry 31, 1270–1279

    CAS  Google Scholar 

  37. Sun, M, Gao, Q S, Li, L, and Paul, S (1994) Proteolytic activity of an antibody light chain J Immunol 153, 5121–5126

    PubMed  CAS  Google Scholar 

  38. Flecker, P (1995) Template-directed protein folding into a metastable state of increased activity Eur J Biochem 232, 528–535

    PubMed  CAS  Google Scholar 

  39. Braco, L, Dabulis, K, and Klibanov, A M (1990) Production of abiotic receptors by molecular imprinting of proteins Proc Natl Acad Sci USA 87, 274–277

    PubMed  CAS  Google Scholar 

  40. Chen, S T, Chen, S Y, and Wang, K T (1992) Kinetically controlled peptide bond formation in anhydrous alcohol catalyzed by the industrial protease alcalase J Org Chem 57, 6960–6965

    CAS  Google Scholar 

  41. Deschrevel, B, Vincent, J C, and Thellier, M (1993) Kinetic study of the α-chymotrypsin-catalyzed hydrolysis and synthesis of a peptide bond in a monophasic aqueous/ organic reaction medium Arch Biochem Biophys 304, 45–52

    PubMed  CAS  Google Scholar 

  42. Matsumura, M and Matthews, B W (1991) Stabilization of functional proteins by introduction of multiple disulfide bonds, in Methods in Enzymology, Vol 202 (Langone, J J, ed), Academic, New York, pp 336–356

    Google Scholar 

  43. Arnold, F H (1993) Engineering proteins for nonnatural environments FASEB J 7, 744–749

    PubMed  CAS  Google Scholar 

  44. Menèndez-Arias, L and Argos, P (1989) Engineering protein thermal stability Sequence statistics point to residue substitutions in cY-helices J Mol Biol 206, 397–406

    PubMed  Google Scholar 

  45. Novotny, J, Ganju, R K, Smiley, S T, Hussey, R E, Luther, M A, Recny, M A, Siliciano, R F, and Reinhjerz, E L (1991) A soluble, single-chain T-cell receptor fragment endowed with antigen-combining properties Proc Natl Acad Sci USA 88, 8646–8650

    PubMed  CAS  Google Scholar 

  46. Bianchi, E, Venturini, S, Pessi, A, Tramontano, A, and Sollazzo, M (1994) High level expression and rational mutagenesis of a designed protein, the minibody From an insoluble to a soluble molecule J Mol Biol 236, 649–659

    PubMed  CAS  Google Scholar 

  47. Reichmann, L, Weill, M, and Cavanagh, J (1992) Improving the antigen affinity of an antibody Fv-fragment by protein design J Mol Biol 224, 913–918

    Google Scholar 

  48. Xiang, J, Chen, Z, Delbaere, L T J., and Liu, E (1993) Differences in antigen-binding affinity caused by a single ammo acid substitution m the variable region of the heavy chain Immunol Cell Biol 71, 239–247

    PubMed  CAS  Google Scholar 

  49. Baldwin, E and Schultz, P G (1989) Generation of a catalytic antibody by site-directed mutagenesis Science 245, 1104–1107

    PubMed  CAS  Google Scholar 

  50. Pollack, S J, Nakayama, G R, and Schultz, P G (1988) Introduction of nucleophiles and spectropscopic probes into antibody combining sites Science 242, 1038–1040

    PubMed  CAS  Google Scholar 

  51. Kuroki, R, Weaver, L H, and Matthews, B W (1993) A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme Science 262, 2030–2034

    PubMed  CAS  Google Scholar 

  52. Madison, E L, Kobe, A, Gething, M J, Sambrook, J F, and Goldsmith, E J (1993) Converting tissue plasminogen activator to a zymogen a regulatory triad of Asp-His-Ser Science 262, 419–424

    PubMed  CAS  Google Scholar 

  53. Graf, L, Craik, C S, Patthy, A, Roczniak, S, Fletterick, R J, and Rutter, W J (1987) Selective alteration of substrate specificity by replacement of aspartic acid-189 with lysine in the binding pocket of trypsin Biochemistry 26, 2616–2623

    PubMed  CAS  Google Scholar 

  54. Beaumont, A, Barbe, B, Le Moual, H, Boileau, G, Crine, P, Fournié-Zaluski, M C, and Rogues, B P (1992) Charge polarity reversal inverses the specificity of neutral endopeptidase-24 11 J Biol Chem 267, 2138–2141

    PubMed  CAS  Google Scholar 

  55. Estell, D A, Graycar, T P, Miller, J V, Powers, D B, Burnier, J P, Ng, P G, and Wells, J A (1986) Probing steric and hydrophobic effects on enzyme-substrate interactions by protein engineering Science 233, 659–663

    PubMed  CAS  Google Scholar 

  56. Paul, S, Volle, D J, Powell, M J, and Massey, R J (1990) Site specificity of a catalytic vasoactive intestinal peptide antibody An inhibitory vasoactive intestinal peptide subsequence distant from the scissile peptide bond J Biol Chem 265, 11,910–11,913

    PubMed  CAS  Google Scholar 

  57. Wilks, H M, Hart, K W, Feeney, R, Dunn, C R, Muirhead, H, Chia, W C, Barsow, D A, Atkinson, T, Clarke, A R, and Holbrook J J (1988) A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework Science 242, 1541–1544

    PubMed  CAS  Google Scholar 

  58. Scrutton, N S, Berry, A, and Perham, R N (1990) Redesign of the coenzyme specificity of a dehydrogenase by protein engineering Nature (London) 343, 38–43

    CAS  Google Scholar 

  59. Alvaro, G and Russell, A J (1991) Modification of enzyme catalysis by engineering surface charge, in Methods in Enzymology, Vol 202 (Langone, J J, ed), New York, Academic, pp 620–643

    Google Scholar 

  60. Muraki, M, Monkawa, M, Jigami, Y, and Tanaka, H (1988) Engineering of human lysozyme as a polyelectrolyte by the alteration of molecular surface charge Protein Eng 21, 49–54

    Google Scholar 

  61. Gilbert, W (1978) Why genes in pieces? Nature (London) 271, 501

    CAS  Google Scholar 

  62. Sun, M, Li, L, Gao, Q S, and Paul, S (1994) Antigen recognition by an antibody light chain J Biol Chem 269, 734–738

    PubMed  CAS  Google Scholar 

  63. Ward, E. S, Gussow, D, Griffiths, A D, Jones, P T, and Winter, G (1989) Binding activities of a repertoire of single immunoglobulin variable domains secreted for Escherichia coli Nature 341, 544–546

    PubMed  CAS  Google Scholar 

  64. Kang, C. Y, Brunck, T K, Kieber-Emmons, T, Blalock, J E, and Kohler, H (1988) Inhibition of self-binding antibodies (autoantibodies) by a VH-denved peptide Science 240, 1034–1036

    PubMed  CAS  Google Scholar 

  65. Igarashi, K., Asai, K, Kaneda, M., Umeda, M, and Inoue, K (1995) Specific binding of a synthetic peptide derived from an antibody complementanly determining region to phosphatidylsenne J Biochem (Tokyo) 117, 452–457

    CAS  Google Scholar 

  66. Clackson, T and Wells, J A (1995) A hot spot of binding energy in a hormone-receptor interface Science 267, 383–386

    PubMed  CAS  Google Scholar 

  67. Mody, R K, Tramontano, A, and Paul, S (1994) Spontaneous hydrolysis of vasoactive intestinal peptide in neutral aqueous solution Int J Pept Protein Res 44, 441–447

    PubMed  CAS  Google Scholar 

  68. Hahn, K W, Khs, W A, and Stewart, J M (1990) Design and synthesis of a peptide having chymotrypsin-hke esterase activity Science 248, 1544–1546

    PubMed  CAS  Google Scholar 

  69. Paul, S, Li, L, Kalaga, R, Wilkins-Stevens, P, Stevens, F J, and Solomon, A (1995) Natural catalytic antibodies Peptide hydrolyzing activities of Bence Jones proteins and VL fragment J Biol Chem 270, 15,257–15,261

    PubMed  CAS  Google Scholar 

  70. Hruby, V J and Nikiforovitch, G V (1991) The Ramachandran Plot and beyond conformational and topochemical considerations in the design of peptides and proteins, in Molecular Conformation and Biological Interactions (Balaram, P and Ramasehan, S, eds), Indian Academy of Sciences, Bangalore, India, pp 429–445

    Google Scholar 

  71. Marshall, G (1993) A hierarchical approach to peptidomimetic design Tetrahedron 49, 3547–3558

    CAS  Google Scholar 

  72. Musso, G F, Patthi, S, Ryskamp, T C, Provow, S, Kaiser, E T, and Velicelebi, G (1988) Development of helix-based vasoactive intestinal peptide analogues identification of residues required for receptor interaction Biochemistry 27, 8174–8181

    PubMed  CAS  Google Scholar 

  73. Bird, R E, Hardman, K D, Jacobson, J W., Johnson, S, Kaufman, B M, Lee, S, Lee, T, Pope, S H, Riordan, G S, and Whitlow, M (1988) Single-chain antigen-binding proteins Science 142, 423–426

    Google Scholar 

  74. Whitlow, M, Bell, B A, Feng, S-L, Filpula, D, Hardman, K D, Hubert, S L, Rollence, M L, Wood, J F, Schott, M. E, Milenic, D E, Yokota, T, and Schlom, J (1993) An improved linker for single-chain Fv with reduced aggregation and enhanced proteolytic stability Protein Eng 6, 989–995

    PubMed  CAS  Google Scholar 

  75. Bedzkyk, W D, Weidner, K M, Denzin, L K, Johnson, L S, Hardman, K D, Pantoliano, M W, Asel, E D, and Voss, E W, Jr (1990) Immunological and structural characterization of a high affinity anti-fluorescein single-chain antibody J Biol Chem 265, 18,615–18,620

    Google Scholar 

  76. Anand, N N, Mandai, S, MacKenzie, C R, Sadowska, J, Sigurskjold, B, Young, N M, Bundle, D R, and Narang, S A (1991) Bacterial expression and secretion of various single-chain Fv genes encoding proteins specific for a Salmonella serotype B O-antigen Bwl Chem 266, 21,874–21,879

    CAS  Google Scholar 

  77. Gao, Q S and Paul, S (1995) Molecular cloning of anti-ground state proteolytic antibody fragments, in Methods in Molecular Biology, Vol 51 Antibody Engineering Protocols (Paul, S, ed), Humana, Totowa, NJ, pp. 281–296

    Google Scholar 

  78. Chang, H C, Bao, Z Z, Yao, Y, Tse, A G D, Goyarts, E C, Madsen, M, Kawasaki, E, Brauer, P P, Sacchettini, J C, Nathenson, S G, and Reinherz, E L (1994) A general method for facilitating heterodimenc pairing between two proteins application to expression of a and β T-cell Proc Natl Acad Sci USA 91, 11,408–11,412

    PubMed  CAS  Google Scholar 

  79. Corey, D R and Schultz, P G (1987) Generation of a hybrid sequence-specific single-stranded deoxynbonuclease Science 238, 1401–1406

    PubMed  CAS  Google Scholar 

  80. Pendergrast, P S, Ebright, Y W, and Ebright, R H (1994) High-specificity DNA cleavage agent design and application to kilobase and megabase DNA substrates Science 265, 959–962

    PubMed  CAS  Google Scholar 

  81. Pomerantz, J L, Sharp, P A, and Pabo, C O (1995) Structure-based design of transcription factors Science 267, 93–96

    PubMed  CAS  Google Scholar 

  82. Lee, G, Chan, W, Hurle, M R, DesJarlais, R L, Watson, F, Sathe, G M, and Wetzel, R (1993) Strong inhibition of fibrinogen binding to platelet receptor αIIβ43 by RGD sequences installed into a presentation scaffold Protein Eng 6, 745–754

    PubMed  CAS  Google Scholar 

  83. Bona, C, Brumeanu, T-D, and Zaghouani, H (1994) Immunogenicity of microbial peptides grafted in self immunoglobulin molecules Cell Mol Bwl 40(Suppl. I), 21–30

    CAS  Google Scholar 

  84. Ward, E S (1995) VH shuffling can be used to convert an Fv fragment of anti-hen egg lysozyme specificity to one that recognizes a T cell receptor Vα Mol Immunol 32, 147–156

    PubMed  CAS  Google Scholar 

  85. Polymenis, M and Stollar, B D (1994) Critical binding site amino acids of anti-Z-DNA single chain Fv molecules role of heavy and light chain CDR3 and relationship to autoantibody activity J Immunol 152, 5318–5329

    PubMed  CAS  Google Scholar 

  86. Gulliver, G A, Bedzyk, W D, Smith, R G, Bode, S L, Tetin, S Y, and Voss, E W, Jr (1994) Conversion of an anti-single-stranded DNA active site to an anti-fluorescein active site through heavy chain complementarily determining region transplantation J Biol Chem 269, 7934–7940

    PubMed  CAS  Google Scholar 

  87. Gulliver, G A and Voss, E W., Jr (1994) Effect of transplantation of antibody heavy chain complementanly determining regions on ligand binding J Biol Chem 269, 24,040–24,045

    PubMed  CAS  Google Scholar 

  88. Turner, S L, Russell, G C, Williamson, M P, and Guest, J R (1993) Restructuring an interdomain linker in the dihydrohpoamide acetyltransferase component of the pyruvate dehydrolgenase complex of Escherichia coli Protein Eng 6, 101–108

    PubMed  CAS  Google Scholar 

  89. Holliger, P, Prospero, T, and Winter, G (1993) “Diabodies” small bivalent and bispecific antibody fragments Proc Natl Acad Sa USA 90, 6444–6448

    CAS  Google Scholar 

  90. Reiter, Y, Brinkmann, U, Webber, K O, Jung, S-H, Lee, B, and Pastan, I (1994) Engineering interchain disulfide bonds into conserved framework regions of Fv fragments Improved biochemical characteristics of recombinant immunotoxins containing disulfide-stabilized Fv Protein Eng 7, 697–704

    PubMed  CAS  Google Scholar 

  91. Brinkmann, U, Reiter, Y, Jung, S-H, Lee, B, and Pastan, I (1993) A recombinant immunotoxin containing a disulfide-stabilized Fv fragment Proc Natl Acad Sci USA 90, 7538–7542

    PubMed  CAS  Google Scholar 

  92. Pack, P, Muller, K, Zahn, R, and Pluckthun, A (1995) Tetravalent miniantibodies with high avidity assembling in Escherwhia coli J Mol Biol 246, 28–34

    PubMed  CAS  Google Scholar 

  93. Neri, D, Momo, M, Prospero, T, and Winter, G (1995) High-affinity antigen binding by chelating recombinant antibodies (CRAbs) J Mol Biol 246, 367–373

    PubMed  CAS  Google Scholar 

  94. Kurucz, I, Titus, J A, Jost, C R, Jacobus, C M, and Segal, D M (1995) Retargeting of CTL by an efficiently refolded bispecific single-chain Fv dimer produced in bacteria J Immunol 154, 4576–4582

    PubMed  CAS  Google Scholar 

  95. Eshhar, Z, Waks, T, Gross, G, and Schindler, D G (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibodybinding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptois Proc Natl Acad Sa USA 90, 720–724

    CAS  Google Scholar 

  96. Gosink, M M and Vierstra, R D (1995) Redirecting the specificity of ubiquitmation by modifying ubiquitin-conjugating enzymes Proc Natl Acad Sci USA 92, 9117–9121

    PubMed  CAS  Google Scholar 

  97. Chaudhary, V K, Batra, J K, Gallo, M. G, Willingham, M C, Fitzgerald, D J, and Pastan, I (1990) A rapid method of cloning functional variable-region antibody genes in Escherwhia cold as single-chain immunotoxins Proc Natl Acad Sci USA 87, 1066–1070

    PubMed  CAS  Google Scholar 

  98. Kreitman, R J, Ballon, P, Chaudhary, V K, FitzGerald, D J P, and Pastan, I (1994) Recombmant immunotoxins containing anti-Tac(Fv) and derivatives of Pseudomonas exotoxin produce complete regression in mice of an mterleukin-2 receptor-expressing human carcinoma Blood 83, 426–434

    PubMed  CAS  Google Scholar 

  99. Yang, J B, Moyana, T, and Xiang, J (1995) A genetically engineered single-chain FV/ TNF molecule possesses the anti-tumor immunoreactivity of FV as well as the cytotoxic activity of tumor necrosis factor Mol Immunol 32, 873–881

    PubMed  CAS  Google Scholar 

  100. Pastan, I H, Archer, G E, McLendon, R E, Friedman, H S, Fuchs, H E, Wang, Q-C, Pai, L H, Herndon, J, and Bigner, D D (1995) Intrathecal administration of single-chain immunotoxin, LMB-7 [B3(Fv)-PE38], produces cures of carcinomatous meningitis in a rat model Proc Natl Acad Sei USA 92, 2765–2769

    CAS  Google Scholar 

  101. George, A J T, Jamar, F, Tai, M S, Heelan, B T, Adams, G P, McCartney, J E, Houston, L. L, Weiner, L M, Oppermann, H, Peters, A M, and Huston, J S (1995) Radiometal labeling of recombinant proteins by a genetically engineered minimal chelation site Technetium-99m coordination by single-chain Fv antibody fusion proteins through a C-terminal cysteinyl peptide Proc Natl Acad Sei USA 92, 8358–8362

    CAS  Google Scholar 

  102. Holvoet, P, Laroche, Y, Lijnen, H R, Van Hoef, B, Brouwers, E, De Cock, F, Lauwereys, M, Gansemans, Y, and Collen, D (1992) Biochemical characterization of single-chain chimeric plasminogen activators consisting of a single-chain Fv fragment of a fibrin-specific antibody and single-chain urokinase Eur J Biochem 210, 945–952

    PubMed  CAS  Google Scholar 

  103. Bickel, U, Yoshikawa, T, Landaw, E M, Faull, K F, and Pardndge, W M (1993) Pharmacologic effects in vivo in brain by vector-mediated peptide drug delivery Proc Natl Acad Sci USA 90, 2618–2622

    PubMed  CAS  Google Scholar 

  104. Rodrigues, M L, Presta, L G, Kotts, C E, Wirth, C, Mordenti, J, Osaka, G, Wong, W L T, Nuijens, A, Blackburn, B, and Carter, P (1995) Development of a humanized disulfide-stabihzed anti-pi 85HER2 Fv-β-lactamase fusion protein for activation of a cephalosporin doxorubicin prodrug Cancer Res 55, 63–70

    PubMed  CAS  Google Scholar 

  105. Eisele, J L, Bertrand, S, Galzi, J L, Devillers-Thiéry, A, Changeux, J P, and Bertrand, D (1993) Chimaenc nicotinic-serotonergic receptor combines distinct ligand binding and channel specificitiess Nature 366, 479–483

    PubMed  CAS  Google Scholar 

  106. Fuh, G, Cunningham, B C, Fukunaga, R, Nagata, S, Goeddel, D V, and Wells, J A (1992) Rational design of potent antagonists to the human growth hormone receptor Science 256, 1677–1684

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc , Totowa, NJ.

About this protocol

Cite this protocol

Paul, S. (1998). Protein Engineering. In: Rapley, R., Walker, J.M. (eds) Molecular Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-59259-642-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-642-3_43

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-501-0

  • Online ISBN: 978-1-59259-642-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics