Skip to main content

Bioluminescence Resonance Energy Transfer (BRET) Coupled Near-Infrared Imaging of Apoptotic Cells

  • Protocol
  • First Online:
Bioluminescent Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2081))

Abstract

Detection of apoptotic cells is crucial for understanding the mechanism of diseases and for therapy development. So far, visible-emitting fluorescent probes such as FITC-labeled Annexin V has been widely used for the detection of apoptotic cells. However, such probes cannot be applied to noninvasive imaging in the near-infrared (NIR) region. Compared with visible light, NIR light is highly permeable in turbid biological samples and tissues. In addition, NIR optical imaging has several advantages such as lower autofluorescence and scattering from biological samples, leading to clearer images with high signal to background ratios. Here, we describe the synthesis and application of bioluminescence resonance energy transfer (BRET)-coupled quantum dots (QDs) for the NIR optical imaging of apoptotic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  CAS  Google Scholar 

  2. Fuchs Y, Steller H (2015) Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol 16:329–344

    Article  CAS  Google Scholar 

  3. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  Google Scholar 

  4. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758

    Article  CAS  Google Scholar 

  5. van Genderen HO, Kenis H, Hofstra L, Narula J, Reutelingsperger CP (2008) Extracellular annexin A5: functions of phosphatidylserine-binding and two-dimensional crystallization. Biochim Biophys Acta 1783:953–963

    Google Scholar 

  6. Lizarbe MA, Barrasa JI, Olmo N, Gavilances F, Turnay J (2013) Annexin-phospholipid interactions. Functional implications. Int J Mol Sci 14:2652–2683

    Article  CAS  Google Scholar 

  7. Nazari M, Minai-Tehrai A, Emamzadeh R (2014) Comparison of different probes based on labeled annexin V for detection of apoptosis. RSC Adv 4:45128–45135

    Article  CAS  Google Scholar 

  8. Koopman G, Reutelingsperger C, Kuijten G, Keehnen R, Pals S, Van Oers M (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    Article  CAS  Google Scholar 

  9. Petrovsky A, Schellenberger E, Josephson L, Weissleder R, Bogdanov A Jr (2003) Near-infrared fluorescent imaging of tumor apoptosis. Cancer Res 63:1936–1942

    CAS  PubMed  Google Scholar 

  10. Hasegawa M, Tsukasaki Y, Ohyanagi T, Jin T (2013) Bioluminescence resonance energy transfer coupled near-infrared quantum dots using GST-tagged luciferase for in vivo imaging. Chem Commun 49:228–230

    Article  CAS  Google Scholar 

  11. Samanta A, Walper SA, Susumu K, Dwyer CL, Medinz IL (2015) An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots. Nanoscale 7:7603–7614

    Article  CAS  Google Scholar 

  12. Yu X, Wen K, Wang Z, Zhang X, Li C, Zhnag S, Shen J (2016) General bioluminescence resonance energy transfer homogeneous immunoassay for small molecules based on quantum dots. Anal Chem 88:3512–3520

    Article  CAS  Google Scholar 

  13. Kamkaew A, Sun H, England CG, Cheng L, Liu Z, Cai W (2016) Quantum dot–NanoLuc bioluminescence resonance energy transfer enables tumor imaging and lymph node mapping in vivo. Chem Commun 52:6997–7000

    Article  CAS  Google Scholar 

  14. Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317

    Article  CAS  Google Scholar 

  15. Srikantha T, Klapach A, Lorenz WW, Tsai LK, Laughlin LA, Gorman JA, Soll DR (1996) The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans. J Bacteriol 178:121–129

    Article  CAS  Google Scholar 

  16. Jin T, Yoshioka Y, Fujii F, Komai Y, Seki J, Seiyama A (2008) Gd3+-functionalized near-infrared quantum dots for in vivo dual modal (fluorescence/magnetic resonance) imaging. Chem Commun 44:5764–5766

    Article  Google Scholar 

  17. Jin T, Fujii F, Komai Y, Seki J, Seiyama A, Yoshioka Y (2008) Preparation and characterization of highly fluorescent, glutathione-coated near infrared quantum dots for in vivo fluorescence imaging. Int J Mol Sci 9:2044–2061

    Article  CAS  Google Scholar 

  18. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  19. Lao UL, Mulchandani A, Chen W (2006) Simple conjugation and purification of quantum dot-antibody complexes using a thermally responsive elastin-protein L scaffold as immunofluorescent agents. J Am Chem Soc 128:14756–14757

    Article  CAS  Google Scholar 

  20. Alam R, Karam LM, Doane TL, Zylstra J, Fontaine DM, Branchini BR, Maye MM (2014) Near infrared bioluminescence resonance energy transfer from firefly luciferase-quantum dot bionanoconjugates. Nanotechnology 25:495606. (7pp)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tsuboi, S., Jin, T. (2020). Bioluminescence Resonance Energy Transfer (BRET) Coupled Near-Infrared Imaging of Apoptotic Cells. In: Ripp, S. (eds) Bioluminescent Imaging. Methods in Molecular Biology, vol 2081. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9940-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9940-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9939-2

  • Online ISBN: 978-1-4939-9940-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics