Skip to main content

Subcellular Localization of Histidine Phosphorylated Proteins Through Indirect Immunofluorescence

  • Protocol
  • First Online:
Histidine Phosphorylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2077))

Abstract

Immunofluorescence (IF) takes advantage of biological and physical mechanisms to identify proteins in cell or tissue samples, exploiting the specificity of antibodies and stimulated fluorescence light emission. Here, we describe an immunofluorescence staining method for the identification of histidine phosphorylated proteins that uses neutral/alkaline conditions and targeted reagents to overcome the chemical lability of histidine phosphorylation. This method describes how 1- and 3-phosphohistidine (pHis) monoclonal antibodies can be used to reveal the localization of proteins containing these elusive phosphoramidate bonds in cells. Standard procedures and materials for IF staining with adherent and nonadherent cells are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coons AH, Creech HJ, Jones RN (1941) Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Biol Med 47:200–202. https://doi.org/10.3181/00379727-47-13084P

    Article  CAS  Google Scholar 

  2. Beutner EH (1961) Immunofluorescent staining: the fluorescent antibody method. Bacteriol Rev 25:49–76

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Borek F (1961) The fluorescent antibody method in medical and biological research. Bull World Health Organ 24:249–256

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Donaldson JG (2015) Immunofluorescence staining. Curr Protoc Cell Biol 69:4.3.1–4.3.7. https://doi.org/10.1002/0471143030.cb0403s69

    Article  Google Scholar 

  5. Joshi S, Yu D (2017) Immunofluorescence. In: Basic science methods for clinical researchers. Elsevier, Amsterdam, pp 135–150

    Chapter  Google Scholar 

  6. Hobro AJ, Smith NI (2017) An evaluation of fixation methods: spatial and compositional cellular changes observed by Raman imaging. Vib Spectrosc 91:31–45. https://doi.org/10.1016/j.vibspec.2016.10.012

    Article  CAS  Google Scholar 

  7. Jamur MC, Oliver C (2010) Permeabilisation of cell membranes. Methods Mol Biol Clifton NJ 588:63–66. https://doi.org/10.1007/978-1-59745-324-0_9

    Article  Google Scholar 

  8. Hermanson GT (2013) Fluorescent probes. In: Hermanson GT (ed) Bioconjugate techniques, 3rd edn. Academic, Boston, MA, pp 395–463

    Chapter  Google Scholar 

  9. Sanderson MJ, Smith I, Parker I, Bootman MD (2014) Fluorescence microscopy. Cold Spring Harb Protoc 2014:pdb.top071795. https://doi.org/10.1101/pdb.top071795

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boyer PD, Deluca M, Ebner KE et al (1962) Identification of phosphohistidine in digests from a probable intermediate of oxidative phosphorylation. J Biol Chem 237:PC3306–PC3308

    CAS  PubMed  Google Scholar 

  11. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215. https://doi.org/10.1146/annurev.biochem.69.1.183

    Article  CAS  PubMed  Google Scholar 

  12. Adam K, Hunter T (2018) Histidine kinases and the missing phosphoproteome from prokaryotes to eukaryotes. Lab Investig J Tech Methods Pathol 98:233–247. https://doi.org/10.1038/labinvest.2017.118

    Article  CAS  Google Scholar 

  13. Kee J-M, Villani B, Carpenter LR, Muir TW (2010) Development of stable phosphohistidine analogues. J Am Chem Soc 132:14327–14329. https://doi.org/10.1021/ja104393t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stadler C, Skogs M, Brismar H et al (2010) A single fixation protocol for proteome-wide immunofluorescence localisation studies. J Proteome 73:1067–1078. https://doi.org/10.1016/j.jprot.2009.10.012

    Article  CAS  Google Scholar 

  15. Fuhs SR, Meisenhelder J, Aslanian A et al (2015) Monoclonal 1- and 3-phosphohistidine antibodies: new tools to study histidine phosphorylation. Cell 162:198–210. https://doi.org/10.1016/j.cell.2015.05.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khan I, Steeg PS (2018) The relationship of NM23 (NME) metastasis suppressor histidine phosphorylation to its nucleoside diphosphate kinase, histidine protein kinase and motility suppression activities. Oncotarget 9:10185–10202. https://doi.org/10.18632/oncotarget.23796

    Article  PubMed  Google Scholar 

  17. Hindupur SK, Colombi M, Fuhs SR et al (2018) The protein histidine phosphatase LHPP is a tumour suppressor. Nature 555:678–682. https://doi.org/10.1038/nature26140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sonmez M, Ince HY, Yalcin O et al (2013) The effect of alcohols on red blood cell mechanical properties and membrane fluidity depends on their molecular size. PLoS One 8:e76579. https://doi.org/10.1371/journal.pone.0076579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun Y, Ip P, Chakrabartty A (2017) Simple elimination of background fluorescence in formalin-fixed human brain tissue for immunofluorescence microscopy. J Vis Exp. https://doi.org/10.3791/56188

  20. Basyuk E, Bertrand E, Journot L (2000) Alkaline fixation drastically improves the signal of in situ hybridization. Nucleic Acids Res 28:e46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berod A, Hartman BK, Pujol JF (1981) Importance of fixation in immunohistochemistry: use of formaldehyde solutions at variable pH for the localisation of tyrosine hydroxylase. J Histochem Cytochem 29:844–850. https://doi.org/10.1177/29.7.6167611

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Waitt Advanced Biophotonics Core Facility of the Salk Institute with funding from NIH-NCI CCSG: P30 014195 and the Waitt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Hunter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Adam, K., Hunter, T. (2020). Subcellular Localization of Histidine Phosphorylated Proteins Through Indirect Immunofluorescence. In: Eyers, C. (eds) Histidine Phosphorylation. Methods in Molecular Biology, vol 2077. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9884-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9884-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9883-8

  • Online ISBN: 978-1-4939-9884-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics