Skip to main content

Adding Function to Protein Scaffolds

  • Protocol
  • First Online:
Book cover Protein Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2073))

Abstract

Biological systems often outperform artificial ones in ordering, assembly, and diversity of structure at the nanoscale. Proteins are particularly remarkable in this context. Through oligomerization, protein monomers assemble on multiple length scales, into larger and more complex structures such as viral capsids, filaments, and regulatory complexes. It is this structural diversity that makes proteins attractive candidates for use as functionalizable scaffolds. Well-established protein structure databases such as the protein data bank (PDB) allow researchers to search for a structure that fits their requirements, allowing them access to shapes and assembly mechanisms that would otherwise be difficult to achieve. Then, by employing functionalization techniques to conjugate artificial or biological molecules to their protein scaffold of choice, researchers can access chemistries beyond the limits of the 20 commonly occurring natural amino acids. Additionally, proteins, with a few exceptions, operate at physiological pH and temperature, making them ideal for medical applications and/or low-cost manufacture. Additionally, proteins sourced from extremophiles such as Thermus aquaticus (a bacterial species sourced from hot springs) display stability across a wide range of temperatures, expanding the scope for scaffold selection. This chapter will cover some of the common methods of protein functionalization as well as some specific examples of popular functionalization methods reported in the literature. It will then present three case studies showing examples of how functionalization and imaging of proteins and protein-based structures can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414

    CAS  PubMed  Google Scholar 

  2. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    CAS  PubMed  Google Scholar 

  3. Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sosa IO, Noguez C, Barrera RG (2003) Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B 107:6269–6275

    CAS  Google Scholar 

  5. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118

    CAS  Google Scholar 

  6. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1:482–501

    CAS  PubMed  Google Scholar 

  7. Ardini M et al (2016) Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring. Nanoscale 8:6739–6753

    CAS  PubMed  Google Scholar 

  8. Zhao G, Zhang P (2014) CryoEM analysis of capsid assembly and structural changes upon interactions with a host restriction factor, TRIM5α. Methods Mol Biol 1087:13–28

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hainfeld JF, Liu W, Halsey CMR, Freimuth P, Powell RD (1999) Ni–NTA–Gold clusters target his-tagged proteins. J Struct Biol 127:185–198

    CAS  PubMed  Google Scholar 

  10. McMillan RA et al (2005) A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays. J Am Chem Soc 127:2800–2801

    CAS  PubMed  Google Scholar 

  11. Pulsipher KW, Honig S, Deng S, Dmochowski IJ (2017) Controlling gold nanoparticle seeded growth in thermophilic ferritin protein templates. J Inorg Biochem 174:169–176

    CAS  PubMed  Google Scholar 

  12. Giessen TW, Silver PA (2016) Converting a natural protein compartment into a nanofactory for the size-constrained synthesis of antimicrobial silver nanoparticles. ACS Synth Biol 5:1497–1504

    CAS  PubMed  Google Scholar 

  13. Chan WCW et al (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46

    CAS  PubMed  Google Scholar 

  14. Goldman ER, Uyeda HT, Mattoussi H, Medintz IL (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435

    PubMed  Google Scholar 

  15. Michalet X et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763

    CAS  PubMed  Google Scholar 

  17. Foubert A et al (2016) Bioconjugation of quantum dots: review & impact on future application. TrAC Trends Anal Chem 83:31–48

    CAS  Google Scholar 

  18. Ishii D et al (2003) Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423:628

    CAS  PubMed  Google Scholar 

  19. Hyeon JE, Shin SK, Han SO (2016) Design of nanoscale enzyme complexes based on various scaffolding materials for biomass conversion and immobilization. Biotechnol J 11:1386–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  20. You C, Zhang Y-HP (2013) Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling. ACS Synth Biol 2:102–110

    CAS  PubMed  Google Scholar 

  21. Oliveira C, Carvalho V, Domingues L, Gama FM (2015) Recombinant CBM-fusion technology—applications overview. Biotechnol Adv 33:358–369

    CAS  PubMed  Google Scholar 

  22. Kim SJ, Hyeon JE, Jeon SD, Choi G, Han SO (2014) Bi-functional cellulases complexes displayed on the cell surface of Corynebacterium glutamicum increase hydrolysis of lignocelluloses at elevated temperature. Enzyme Microb Technol 66:67–73

    CAS  PubMed  Google Scholar 

  23. Zhang Y-HP (2011) Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol Adv 29:715–725

    CAS  PubMed  Google Scholar 

  24. Arai R, Ueda H, Kitayama A, Kamiya N, Nagamune T (2001) Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng Des Sel 14:529–532

    CAS  Google Scholar 

  25. Riggs, P., La Vallie, E. R. & McCoy, J. M. (2001) Introduction to expression by fusion protein vectors. Curr Protoc Mol Biol Chapter 16, Unit16.4A

    Google Scholar 

  26. Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65:1357–1369

    CAS  PubMed  Google Scholar 

  27. Davis GD, Elisee C, Newham DM, Harrison RG (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 65:382–388

    CAS  PubMed  Google Scholar 

  28. Xu R, Ayers B, Cowburn D, Muir TW (1999) Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci U S A 96:388–393

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 95:6705–6710

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Englard S, Seifter S (1990) Precipitation techniques. Methods Enzymol 182:285–300

    CAS  PubMed  Google Scholar 

  31. ExPASy - ProtParam tool. https://web.expasy.org/protparam/. Accessed 8 Dec 2017

  32. Weber PC, Ohlendorf DH, Wendoloski JJ, Salemme FR (1989) Structural origins of high-affinity biotin binding to streptavidin. Science 243:85–88

    CAS  PubMed  Google Scholar 

  33. Howarth M et al (2006) A monovalent streptavidin with a single femtomolar biotin binding site. Nat Methods 3:267–273

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Howarth M, Takao K, Hayashi Y, Ting AY (2005) Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc Natl Acad Sci U S A 102:7583–7588

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Arnau J, Lauritzen C, Petersen GE, Pedersen J (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 48:1–13

    CAS  PubMed  Google Scholar 

  36. Aubin-Tam M-E, Hamad-Schifferli K (2008) Structure and function of nanoparticle–protein conjugates. Biomed Mater 3:034001

    PubMed  Google Scholar 

  37. Geoghegan WD, Ackerman GA (1977) Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. J Histochem Cytochem 25:1187–1200

    CAS  PubMed  Google Scholar 

  38. Leavell MD, Novak P, Behrens CR, Schoeniger JS, Kruppa GH (2004) Strategy for selective chemical cross-linking of tyrosine and lysine residues. J Am Soc Mass Spectrom 15:1604–1611

    CAS  PubMed  Google Scholar 

  39. Lambert JM, Chari RVJ (2014) Ado-trastuzumab Emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem 57:6949–6964

    CAS  PubMed  Google Scholar 

  40. LoRusso PM, Weiss D, Guardino E, Girish S, Sliwkowski MX (2011) Trastuzumab Emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res 17:6437–6447

    CAS  PubMed  Google Scholar 

  41. Sokalingam S, Raghunathan G, Soundrarajan N, Lee S-G (2012) A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein. PLoS One 7:e40410

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo HH, Choe J, Loeb LA (2004) Protein tolerance to random amino acid change. Proc Natl Acad Sci U S A 101:9205–9210

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shortle D, DiMaio D, Nathans D (1981) Directed mutagenesis. Annu Rev Genet 15:265–294

    CAS  PubMed  Google Scholar 

  44. Liu Y, Yang Y, Qi J, Peng H, Zhang J-T (2008) Effect of cysteine mutagenesis on the function and disulfide bond formation of human ABCG2. J Pharmacol Exp Ther 326:33–40

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62:1125–1132

    CAS  PubMed  Google Scholar 

  46. Ravi S, Krishnamurthy VR, Caves JM, Haller CA, Chaikof EL (2012) Maleimide–thiol coupling of a bioactive peptide to an elastin-like protein polymer. Acta Biomater 8(2):627–635

    CAS  PubMed  Google Scholar 

  47. Dyer KF (1971) The quiet revolution: a new synthesis of biological knowledge. J Biol Educ 5:15–24

    CAS  Google Scholar 

  48. King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164:788–798

    CAS  PubMed  Google Scholar 

  49. Thirumurugan P, Matosiuk D, Jozwiak K (2013) Click chemistry for drug development and diverse chemical–biology applications. Chem Rev 113:4905–4979

    CAS  PubMed  Google Scholar 

  50. Grabarek Z, Gergely J (1990) Zero-length crosslinking procedure with the use of active esters. Anal Biochem 185:131–135

    CAS  PubMed  Google Scholar 

  51. RCSB PDB - 5JCG: Structure of Human Peroxiredoxin 3 as three stacked rings. https://www.rcsb.org/structure/5JCG. Accessed 13 Feb 2018.

  52. Phillips AJ et al (2014) Peroxiredoxin is a versatile self-assembling tecton for protein nanotechnology. Biomacromolecules 15:1871–1881

    CAS  PubMed  Google Scholar 

  53. Domigan LJ et al (2017) Formation of supramolecular protein structures on gold surfaces. Biointerphases 12:04E405

    PubMed  Google Scholar 

  54. Sasso L et al (2014) Versatile multi-functionalization of protein nanofibrils for biosensor applications. Nanoscale 6:1629–1634

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura J. Domigan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Webster, K., Sasso, L., Domigan, L.J. (2020). Adding Function to Protein Scaffolds. In: Gerrard, J., Domigan, L. (eds) Protein Nanotechnology. Methods in Molecular Biology, vol 2073. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9869-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9869-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9868-5

  • Online ISBN: 978-1-4939-9869-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics