Skip to main content

Advanced Methods for the Analysis of Altered Pre-mRNA Splicing in Yeast and Disease

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2049))

Abstract

Splicing of pre-messenger RNA (pre-mRNA) transcripts is a fundamental process in all eukaryotes that provides a mechanism of increasing the proteomic diversity within a cell that can be tightly regulated in a dynamic manner. While constitutive and alternative splicing are necessary for the correct development and regulation of cells/organisms, aberrant splicing is now associated with an increasingly varied number of human diseases, such as neurological and developmental diseases, and cancer. Studies of splicing mechanisms and regulation are often achieved in nonhuman model organisms such as yeast. Yeasts possess homologs to many of the core spliceosome components of higher organisms, including humans, and as such yeast species are now a well-established model organism for understanding how differential splicing of transcripts can alter the phenotype of a cell or organism. Here we describe methods to investigate pre-mRNA splicing in yeast cells using modern RNA-Seq technology and bioinformatics software. Details of traditional validation methods are also described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Will CL, Lührmann R (2011) Spliceosome structure and function. TL - 3. Cold Spring Harb Perspect Biol 3:1–23. https://doi.org/10.1101/cshperspect.a003707

    Article  CAS  Google Scholar 

  2. Wright HL, Thomas HB, Moots RJ, Edwards SW (2013) RNA-Seq reveals activation of both common and cytokine-specific pathways following neutrophil priming. PLoS One 8(3):e58598. https://doi.org/10.1371/journal.pone.0058598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wright HL, Thomas HB, Moots RJ, Edwards SW (2014) Interferon gene expression signature in rheumatoid arthritis neutrophils correlates with a good response to TNFi therapy. Rheumatol (Oxford) 54:188–193. https://doi.org/10.1093/rheumatology/keu299

    Article  CAS  Google Scholar 

  4. Wieczorek D, Newman WG, Wieland T et al (2014) Compound Heterozygosity of low-frequency promoter deletions and rare loss-of-function mutations in TXNL4A causes burn-McKeown syndrome. Am J Hum Genet 95:698–707. https://doi.org/10.1016/j.ajhg.2014.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lines MA, Huang L, Schwartzentruber J et al (2012) Haploinsufficiency of a spliceosomal GTPase encoded by EFTUD2 causes mandibulofacial dysostosis with microcephaly. Am J Hum Genet 90:369–377. https://doi.org/10.1016/j.ajhg.2011.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bacrot S, Doyard M, Huber C et al (2015) Mutations in SNRPB, encoding components of the core splicing machinery, cause cerebro-costo-mandibular syndrome. Hum Mutat 36:187–190. https://doi.org/10.1002/humu.22729

    Article  CAS  PubMed  Google Scholar 

  7. Tan Q, Yalamanchili HK, Park J et al (2016) Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models. Hum Mol Genet 25:5083–5093. https://doi.org/10.1093/hmg/ddw337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen K, Xiao H, Zeng J et al (2017) Alternative splicing of EZH2 pre-mRNA by SF3B3 contributes to the tumorigenic potential of renal cancer. Clin Cancer Res 23:3428–3441. https://doi.org/10.1158/1078-0432.CCR-16-2020

    Article  CAS  PubMed  Google Scholar 

  9. Frazer LN, Nancollis V, O’Keefe RT (2008) The role of Snu114p during pre-mRNA splicing. Biochem Soc Trans 36:551–553. https://doi.org/10.1042/BST0360551

    Article  CAS  PubMed  Google Scholar 

  10. Grainger RJ, Beggs JD (2005) Prp8 protein: at the heart of the spliceosome. RNA 11:533–557. https://doi.org/10.1261/rna.2220705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hahn D, Beggs JD (2010) Brr2p RNA helicase with a split personality: insights into structure and function: figure 1. Biochem Soc Trans 38:1105–1109. https://doi.org/10.1042/BST0381105

    Article  CAS  PubMed  Google Scholar 

  12. Zhao C, Bellur DL, Lu S et al (2009) Autosomal-dominant retinitis Pigmentosa caused by a mutation in SNRNP200, a gene required for unwinding of U4/U6 snRNAs. Am J Hum Genet 85:617–627. https://doi.org/10.1016/j.ajhg.2009.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Towns KV, Kipioti A, Long V et al (2010) Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes. Hum Mutat 31:1361–1376. https://doi.org/10.1002/humu.21236

    Article  CAS  Google Scholar 

  14. O’Keefe RT, Beggs JD (2012) Yeast genetics to investigate the function of core pre-mRNA splicing factors, Alternative pre-mRNA splicing: theory and protocols. Wiley-Blackwell, Boston, pp 428–436

    Google Scholar 

  15. Janke C, Magiera MM, Rathfelder N et al (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962. https://doi.org/10.1002/yea.1142

    Article  CAS  PubMed  Google Scholar 

  16. Lehalle D, Wieczorek D, Zechi-Ceide RM et al (2015) A review of craniofacial disorders caused by spliceosomal defects. Clin Genet 88:405–415. https://doi.org/10.1111/cge.12596

    Article  CAS  PubMed  Google Scholar 

  17. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics 1

    Google Scholar 

  18. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  Google Scholar 

  20. Anders S, Pyl PT, Huber W (2015) HTSeq-A python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. https://doi.org/10.1093/bioinformatics/btu638

    Article  CAS  PubMed  Google Scholar 

  21. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Howe EA, Sinha R, Schlauch D, Quackenbush J (2011) RNA-Seq analysis in MeV. Bioinformatics 27:3209–3210. https://doi.org/10.1093/bioinformatics/btr490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond T. O’Keefe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thomas, H.B., O’Keefe, R.T. (2019). Advanced Methods for the Analysis of Altered Pre-mRNA Splicing in Yeast and Disease. In: Oliver, S.G., Castrillo, J.I. (eds) Yeast Systems Biology. Methods in Molecular Biology, vol 2049. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9736-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9736-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9735-0

  • Online ISBN: 978-1-4939-9736-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics