Skip to main content

Metabolic Profiling Using In Vivo High Field Flow NMR

  • Protocol
  • First Online:
NMR-Based Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2037))

Abstract

In vivo NMR (nuclear magnetic resonance) has the potential to monitor and record metabolic flux in close to real time, which is essential for better understanding the toxic mode of action of a contaminant and deciphering complex interconnected stress-induced pathways impacted inside an organism. Here, we describe how to construct and use a simple flow system to keep small aquatic organisms alive inside the NMR spectrometer. In living organisms, magnetic susceptibility distortions lead to severe broadening in conventional NMR. Two main approaches can be employed to overcome this issue: (1) use a pulse sequence to reduce the distortions, or (2) employ multidimensional NMR in combination with isotopic enrichment to provide the spectral dispersion required to separate peaks from overlapping resonances. Both approaches are discussed, and protocols for both approaches are provided here in the context of small aquatic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soares DP, Law M (2009) Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol 64:12–21

    Article  CAS  Google Scholar 

  2. Bunescu A, Garric J, Vollat B et al (2010) In vivo proton HR-MAS NMR metabolic profile of the freshwater cladoceran Daphnia magna. Mol BioSyst 6:121–125. https://doi.org/10.1039/b915417e

    Article  CAS  PubMed  Google Scholar 

  3. Bondu S, Kervarec N, Deslandes E, Pichon R (2008) The use of HRMAS NMR spectroscopy to study the in vivo intra-cellular carbon/nitrogen ratio of Solieria chordalis (Rhodophyta). J Appl Phycol 20:673–679. https://doi.org/10.1007/s10811-007-9231-2

    Article  CAS  Google Scholar 

  4. Fugariu I, Bermel W, Lane D et al (2017) In-phase ultra high-resolution in vivo NMR. Angew Chemie - Int Ed 56:6324–6328. https://doi.org/10.1002/anie.201701097

    Article  CAS  Google Scholar 

  5. Soong R, Nagato E, Sutrisno A et al (2015) In vivo NMR spectroscopy: toward real time monitoring of environmental stress. Magn Reson Chem 53:774–779. https://doi.org/10.1002/mrc.4154

    Article  CAS  PubMed  Google Scholar 

  6. Edison AS, Hall RD, Junot C et al (2016) The time is right to focus on model organism metabolomes. Meta 6. https://doi.org/10.3390/metabo6010008

    Article  Google Scholar 

  7. Ebert D (2005) Ecology, epidemiology and evolution of parasitism in Daphnia

    Google Scholar 

  8. Akhter M, Dutta Majumdar R, Fortier-McGill B et al (2016) Identification of aquatically available carbon from algae through solution-state NMR of whole 13C-labelled cells. Anal Bioanal Chem 408:4357–4370. https://doi.org/10.1007/s00216-016-9534-8

    Article  CAS  PubMed  Google Scholar 

  9. Majumdar RD, Akhter M, Fortier-McGill B et al (2017) In vivo solution-state NMR-based environmental metabolomics. eMagRes 6:133–148. https://doi.org/10.1002/9780470034590.emrstm1533

    Article  CAS  Google Scholar 

  10. Environment Canada (2007) Biological test method: acute lethality test using Daphnia spp.

    Google Scholar 

  11. Stein JR (1973) Handbook of phycological methods: physiological and biochemical methods. Cambridge University Press, Cambridge

    Google Scholar 

  12. Giraudeau P, Silvestre V, Akoka S (2015) Optimizing water suppression for quantitative NMR-based metabolomics: a tutorial review. Metabolomics 11:1041–1055

    Article  CAS  Google Scholar 

  13. Masoom H, Adamo A, Simpson AJ (2016) From the environment to NMR: water suppression for whole samples in their native state. Environ Chem 13:767–775. https://doi.org/10.1071/EN15139

    Article  CAS  Google Scholar 

  14. Lam B, Simpson AJ (2008) Direct (1)H NMR spectroscopy of dissolved organic matter in natural waters. Analyst 133:263–269. https://doi.org/10.1039/b713457f

    Article  CAS  PubMed  Google Scholar 

  15. Pautler BG, Simpson AJ, Simpson MJ et al (2011) Detection and structural identification of dissolved organic matter in antarctic glacial ice at natural abundance by SPR-W5-WATERGATE 1H NMR spectroscopy. Environ Sci Technol 45:4710–4717. https://doi.org/10.1021/es200697c

    Article  CAS  PubMed  Google Scholar 

  16. Zerbe O, Jurt S (2014) Applied NMR spectroscopy for chemists and life scientists. Wiley-VCH, Weinheim

    Google Scholar 

  17. Mobarhan YL, Fortier-McGill B, Soong R et al (2016) Comprehensive multiphase NMR applied to a living organism. Chem Sci 7:4856–4866. https://doi.org/10.1039/C6SC00329J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Viant MR, Pincetich CA, Hinton DE, Tjeerdema RS (2006) Toxic actions of dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo 31P NMR, HPLC-UV and 1H NMR metabolomics. Aquat Toxicol 76:329–342. https://doi.org/10.1016/j.aquatox.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  19. Pincetich CA, Viant MR, Hinton DE, Tjeerdema RS (2005) Metabolic changes in Japanese medaka (Oryzias latipes) during embryogenesis and hypoxia as determined by in vivo 31P NMR. Comp Biochem Physiol Part C Toxicol Pharmacol 140:103–113. https://doi.org/10.1016/J.CCA.2005.01.010

    Article  Google Scholar 

  20. Viant MR, Walton JH, Tjeerdema RS (2001) Comparative sublethal actions of 3-Trifluoromethyl-4-nitrophenol in marine molluscs as measured by in vivo31P NMR. Pestic Biochem Physiol 71:40–47. https://doi.org/10.1006/pest.2001.2554

    Article  CAS  Google Scholar 

  21. Viant MR, Walton JH, TenBrook PL, Tjeerdema RS (2002) Sublethal actions of copper in abalone (Haliotis rufescens) as characterized by in vivo 31P NMR. Aquat Toxicol 57:139–151. https://doi.org/10.1016/S0166-445X(01)00195-3

    Article  CAS  PubMed  Google Scholar 

  22. Kreutzer U, Jue T (1998) Metabolic response to oxygen limitation in Arenicola marina as determined with the 1H NMR signals of myoglobin. Comp Biochem Physiol Part A Mol Integr Physiol 120:127–132. https://doi.org/10.1016/S1095-6433(98)10020-X

    Article  Google Scholar 

  23. Bock C, Frederich M, Wittig R-M, Pörtner H-O (2001) Simultaneous observations of haemolymph flow and ventilation in marine spider crabs at different temperatures: a flow weighted MRI study. Magn Reson Imaging 19:1113–1124. https://doi.org/10.1016/S0730-725X(01)00414-3

    Article  CAS  PubMed  Google Scholar 

  24. Hertkorn N, Ruecker C, Meringer M et al (2007) High-precision frequency measurements: indispensable tools at the core of the molecular-level analysis of complex systems. Anal Bioanal Chem 389:1311–1327. https://doi.org/10.1007/s00216-007-1577-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tabatabaei Anaraki M, Dutta Majumdar R, Wagner N et al (2018) Development and application of a low-volume flow system for solution-state in vivo NMR. Anal Chem 90:7912–7921. https://doi.org/10.1021/acs.analchem.8b00370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Andre Simpson would like to thank the Natural Sciences and Engineering Research Council (NSERC) (Strategic (STPGP 494273-16) and Discovery Programs (RGPIN-2019-04165)), the Canada Foundation for Innovation (CFI), the Ontario Ministry of Research and Innovation (MRI), the Krembil Foundation for providing funding, and the Government of Ontario for an Early Researcher Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André J. Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anaraki, M.T., Lane, D., Bastawrous, M., Jenne, A., Simpson, A.J. (2019). Metabolic Profiling Using In Vivo High Field Flow NMR. In: Gowda, G., Raftery, D. (eds) NMR-Based Metabolomics. Methods in Molecular Biology, vol 2037. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9690-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9690-2_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9689-6

  • Online ISBN: 978-1-4939-9690-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics