Skip to main content

Imaging rRNA Methylation in Bacteria by MR-FISH

  • Protocol
  • First Online:
Book cover Imaging Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2038))

Abstract

Methylation of RNA is normally monitored in purified cell lysates using next-generation sequencing, gel electrophoresis, or mass spectrometry as readouts. These bulk methods require the RNA from ~104 to 107 cells to be pooled to generate sufficient material for analysis. Here we describe a method—methylation-sensitive RNA in situ hybridization (MR-FISH)—that assays rRNA methylation in bacteria on a cell-by-cell basis, using methylation-sensitive hybridization probes and fluorescence microscopy. We outline step-by-step protocols for designing probes, in situ hybridization, and analysis of data using freely available code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler M, Weissmann B, Gutman AB (1958) Occurrence of methylated purine bases in yeast ribonucleic acid. J Biol Chem 230:717–723

    CAS  PubMed  Google Scholar 

  2. Starr JL, Fefferman R (1964) The occurrence of methylated bases in ribosomal ribonucleic acid of Escherichia coli K12 W-6. J Biol Chem 239:3457–3461

    CAS  PubMed  Google Scholar 

  3. Kellner S, Burhenne J, Helm M (2010) Detection of RNA modifications. RNA Biol 7:237–247

    Article  CAS  Google Scholar 

  4. Helm M, Motorin Y (2017) Detecting RNA modifications in the epitranscriptome: predict and validate. Nat Rev Genet 18:275–291. https://doi.org/10.1038/nrg.2016.169

    Article  CAS  PubMed  Google Scholar 

  5. Motorin Y, Muller S, Behm-Ansmant I, Branlant C (2007) Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol 425:21–53. https://doi.org/10.1016/S0076-6879(07)25002-5

    Article  CAS  PubMed  Google Scholar 

  6. Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M et al (2013) Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc 8:176–189. https://doi.org/10.1038/nprot.2012.148

    Article  CAS  PubMed  Google Scholar 

  7. Ovcharenko A, Rentmeister A (2018) Emerging approaches for detection of methylation sites in RNA. Open Biol 8:180121. https://doi.org/10.1098/rsob.180121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ranasinghe RT, Challand MR, Ganzinger KA et al (2018) Detecting RNA base methylations in single cells by in situ hybridization. Nat Commun 9. https://doi.org/10.1038/s41467-017-02714-7

  9. Dennis PP, Bremer H (2008) Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus 3. https://doi.org/10.1128/ecosal.5.2.3

  10. Micura R, Pils W, Höbartner C et al (2001) Methylation of the nucleobases in RNA oligonucleotides mediates duplex-hairpin conversion. Nucleic Acids Res 29:3997–4005

    Article  CAS  Google Scholar 

  11. Roost C, Lynch SR, Batista PJ et al (2015) Structure and thermodynamics of N 6-Methyladenosine in RNA: a spring-Loaded Base modification. J Am Chem Soc 137:2107–2115. https://doi.org/10.1021/ja513080v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308. https://doi.org/10.1038/nbt0396-303

    Article  CAS  Google Scholar 

  13. Bonnet G, Tyagi S (1999) Thermodynamic basis of the enhanced specificity of structured DNA probes. Proc Natl Acad Sci U S A 96:6171–6176

    Article  CAS  Google Scholar 

  14. Marras SAE, Kramer FR, Tyagi S (2002) Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res 30:e122

    Article  Google Scholar 

  15. Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33:577–581. https://doi.org/10.1093/nar/gki591

    Article  CAS  Google Scholar 

  16. Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31. https://doi.org/10.1007/978-1-60327-429-6_1

    Article  CAS  PubMed  Google Scholar 

  17. Fuchs BM, Glockner FO, Wulf J, Amann R (2000) Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 66:3603–3607. https://doi.org/10.1128/AEM.66.8.3603-3607.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fuchs BM, Wallner G, Beisker W et al (1998) Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 64:4973–4982. https://doi.org/10.1007/s00214-011-0990-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fuchs BM, Syutsubo K, Ludwig W, Amann R (2001) In situ accessibility of Escherichia coli 23S rRNA to fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 67:961–968. https://doi.org/10.1128/AEM.67.2.961-968.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rueden CT, Schindelin J, Hiner MC et al (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18:1–26. https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  21. Ranasinghe RT, Challand MR, Ganzinger KA et al (2017) Detecting RNA base methylations in single cells by in situ hybridization (datasets). https://doi.org/10.6084/m9.figshare.4667959.v1

Download references

Acknowledgments

This work was supported by the EU Innovative Medicines Initiative, IMI (RAPP-ID project, grant agreement, no. 115153), the UK Biotechnology and Biological Sciences Research Council, BBSRC (Project Grant: BB/J017906/1), and the UK Engineering and Physical Sciences Research Council, EPRSC (Project Grant: EP/M027546/1). D.K. is supported by the Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohan T. Ranasinghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ganzinger, K.A., Challand, M.R., Spencer, J., Klenerman, D., Ranasinghe, R.T. (2019). Imaging rRNA Methylation in Bacteria by MR-FISH. In: Shav-Tal, Y. (eds) Imaging Gene Expression. Methods in Molecular Biology, vol 2038. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9674-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9674-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9673-5

  • Online ISBN: 978-1-4939-9674-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics