Skip to main content

Delivery of Antisense Oligonucleotides Mediated by a Hydrogel System: In Vitro and In Vivo Application in the Context of Spinal Cord Injury

  • Protocol
  • First Online:
Oligonucleotide-Based Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2036))

  • 1610 Accesses

Abstract

Biomaterials-based hydrogels are attractive drug-eluting vehicles in the context of RNA therapeutics, such as those utilizing antisense oligonucleotide or RNA interference based drugs, as they can potentially reduce systemic toxicity and enhance in vivo efficacy by increasing in situ concentrations. Here we describe the preparation of antisense oligonucleotide-loaded fibrin hydrogels exploring their applications in the context of the nervous system utilizing an organotypic dorsal root ganglion explant in vitro system and an in vivo model of spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3:6–15. https://doi.org/10.3390/gels3010006

    Article  CAS  PubMed Central  Google Scholar 

  2. Pêgo AP, Kubinova S, Cizkova D et al (2012) Regenerative medicine for the treatment of spinal cord injury: more than just promises? J Cell Mol Med 16:2564–2582. https://doi.org/10.1111/j.1582-4934.2012.01603.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carballo-Molina OA, Velasco I (2015) Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Front Cell Neurosci 9:13. https://doi.org/10.3389/fncel.2015.00013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stein CA, Hansen JB, Lai J et al (2010) Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents. Nucleic Acids Res 38:e3. https://doi.org/10.1093/nar/gkp841

    Article  CAS  PubMed  Google Scholar 

  5. Straarup EM, Fisker N, Hedtjärn M et al (2010) Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates. Nucleic Acids Res 38:7100–7111. https://doi.org/10.1093/nar/gkq457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crooke ST, Wang S, Vickers TA et al (2017) Cellular uptake and trafficking of antisense oligonucleotides. Nat Biotechnol 35:230–237. https://doi.org/10.1038/nbt.3779

    Article  CAS  Google Scholar 

  7. Passini MA, Bu J, Richards AM et al (2011) Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 3:72ra18. https://doi.org/10.1126/scitranslmed.3001777

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kordasiewicz HB, Stanek LM, Wancewicz EV et al (2012) Sustained therapeutic reversal of Huntington's disease by transient repression of Huntingtin synthesis. Neuron 74:1031–1044. https://doi.org/10.1016/j.neuron.2012.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khorkova O, Wahlestedt C (2017) Oligonucleotide therapies for disorders of the nervous system. Nat Biotechnol 35:249–263. https://doi.org/10.1038/nbt.3784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith CIE, Zain R (2018) Therapeutic oligonucleotides: state of the art. Annu Rev Pharmacol Toxicol. https://doi.org/10.1146/annurev-pharmtox-010818-021050

    Article  CAS  Google Scholar 

  11. Johnson PJ, Parker SR, Sakiyama-Elbert SE (2009) Controlled release of neurotrophin-3 from fibrin-based tissue engineering scaffolds enhances neural fiber sprouting following subacute spinal cord injury. Biotechnol Bioeng 104:1207–1214. https://doi.org/10.1002/bit.22476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. King VR, Alovskaya A, Wei DYT et al (2010) The use of injectable forms of fibrin and fibronectin to support axonal ingrowth after spinal cord injury. Biomaterials 31:4447–4456. https://doi.org/10.1016/j.biomaterials.2010.02.018

    Article  CAS  PubMed  Google Scholar 

  13. Sharp KG, Yee KM, Steward O (2014) A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury. Exp Neurol 257:186–204. https://doi.org/10.1016/j.expneurol.2014.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moreno PMD, Ferreira AR, Salvador D et al (2018) Hydrogel-assisted antisense LNA Gapmer delivery for in situ gene silencing in spinal cord injury. Mol Ther Nucleic Acids 11:393–406. https://doi.org/10.1016/j.omtn.2018.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pires LR, Rocha DN, Ambrosio L, Pêgo AP (2015) The role of the surface on microglia function: implications for central nervous system tissue engineering. J R Soc Interface 12:20141224–20141224. https://doi.org/10.1098/rsif.2014.1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pires LR, Lopes CDF, Salvador D et al (2017) Ibuprofen-loaded fibrous patches-taming inhibition at the spinal cord injury site. J Mater Sci Mater Med 28:157. https://doi.org/10.1007/s10856-017-5967-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) in the framework of the Harvard-Portugal Medical School Program [HMSP-ICT/0020/2010]; Project NORTE-01-0145-FEDER-000008, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Program for Competitiveness and Internationalization (POCI), Portugal 2020; by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274); Santa Casa da Misericordia de Lisboa—Prémio Neurociências Mello e Castro (MC-1068-2015) and the fellowships SFRH/BPD/108738/2015 (FCT) to P.M.D.M and Infarmed (FIS-FIS-2015-01_CCV_20150630-88) to M.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana P. Pêgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moreno, P.M.D., Rodrigues, T., Torrado, M., Amaral, I.F., Pêgo, A.P. (2019). Delivery of Antisense Oligonucleotides Mediated by a Hydrogel System: In Vitro and In Vivo Application in the Context of Spinal Cord Injury. In: Gissberg, O., Zain, R., Lundin, K. (eds) Oligonucleotide-Based Therapies. Methods in Molecular Biology, vol 2036. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9670-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9670-4_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9669-8

  • Online ISBN: 978-1-4939-9670-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics