Skip to main content

Homogeneous Antibody–Drug Conjugates via Glycoengineering

  • Protocol
  • First Online:
Bioconjugation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2033))

Abstract

Conventional antibody–drug conjugates (ADCs) randomly assemble small-molecule drugs onto Lys or Cys residues of a tumor-targeting antibody, featured with heterogeneity in payload numbers and conjugation positions. Glycosite-specific ADCs (gsADCs) link payload drugs onto IgG Fc N-glycans with high homogeneity that facilitates structural optimization and quality control for ADC drug development. In this protocol, we report two strategies for preparation of homogeneous ADCs via chemoenzymatic glycoengineering. First, an azido-tagged unnatural N-glycan substrate is transferred onto Fc glycosites of a therapeutic antibody through Endo-S-catalyzed glycoremodeling, followed by click reaction with an alkyne-tagged payload drug to give a well-defined gsADC. In an alternative way, glycoengineering of antibody with a natural sialylated N-glycan and successive selective oxidation of sialic acid moieties using sodium periodate provided an aldehyde handle on the glycans for conjugation with an aminooxy-assembled payload. These two strategies both enable gsADCs with high homogeneity in their conjugation sites, payload numbers, and glycoforms, which are characterized of a single mass under mass-spectral detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck A, Goetsch L, Dumontet C et al (2017) Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 16(5):315–337. https://doi.org/10.1038/nrd.2016.268

    Article  CAS  PubMed  Google Scholar 

  2. Lopus M (2011) Antibody-DM1 conjugates as cancer therapeutics. Cancer Lett 307(2):113–118. https://doi.org/10.1016/j.canlet.2011.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chari RV, Miller ML, Widdison WC (2014) Antibody-drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed Engl 53(15):3796–3827. https://doi.org/10.1002/anie.201307628

    Article  CAS  PubMed  Google Scholar 

  4. Malik P, Phipps C, Edginton A et al (2017) Pharmacokinetic considerations for antibody-drug conjugates against cancer. Pharm Res 34(12):2579–2595. https://doi.org/10.1007/s11095-017-2259-3

    Article  CAS  PubMed  Google Scholar 

  5. Shen BQ, Xu K, Liu L et al (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 30(2):184–189. https://doi.org/10.1038/nbt.2108

    Article  CAS  PubMed  Google Scholar 

  6. Beck A (2013) Review of antibody-drug conjugates, methods in molecular biology series. MAbs 6(1):30–33. https://doi.org/10.4161/mabs.27005

    Article  PubMed Central  Google Scholar 

  7. Okeley NM, Toki BE, Zhang X et al (2013) Metabolic engineering of monoclonal antibody carbohydrates for antibody-drug conjugation. Bioconjug Chem 24(10):1650–1655. https://doi.org/10.1021/bc4002695

    Article  CAS  PubMed  Google Scholar 

  8. Li X, Fang T, Boons GJ (2014) Preparation of well-defined antibody-drug conjugates through glycan remodeling and strain-promoted azide-alkyne cycloadditions. Angew Chem Int Ed Engl 53(28):7179–7182. https://doi.org/10.1002/anie.201402606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou Q, Stefano JE, Manning C et al (2014) Site-specific antibody-drug conjugation through glycoengineering. Bioconjug Chem 25(3):510–520. https://doi.org/10.1021/bc400505q

    Article  CAS  PubMed  Google Scholar 

  10. Behrens CR, Liu B (2014) Methods for site-specific drug conjugation to antibodies. MAbs 6(1):46–53. https://doi.org/10.4161/mabs.26632

    Article  PubMed  Google Scholar 

  11. Zimmerman ES, Heibeck TH, Gill A et al (2014) Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug Chem 25(2):351–361. https://doi.org/10.1021/bc400490z

    Article  CAS  PubMed  Google Scholar 

  12. Tian F, Lu Y, Manibusan A et al (2014) A general approach to site-specific antibody drug conjugates. Proc Natl Acad Sci U S A 111(5):1766–1771. https://doi.org/10.1073/pnas.1321237111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dennler P, Chiotellis A, Fischer E et al (2014) Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody–drug conjugates. Bioconjug Chem 25(3):569–578. https://doi.org/10.1021/bc400574z

    Article  CAS  PubMed  Google Scholar 

  14. Zhu Z, Ramakrishnan B, Li J et al (2014) Site-specific antibody-drug conjugation through an engineered glycotransferase and a chemically reactive sugar. MAbs 6(5):1190–1200. https://doi.org/10.4161/mabs.29889

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qasba PK (2015) Glycans of antibodies as a specific site for drug conjugation using Glycosyltransferases. Bioconjug Chem 26(11):2170–2175. https://doi.org/10.1021/acs.bioconjchem.5b00173

    Article  CAS  PubMed  Google Scholar 

  16. Kudirka R, Barfield RM, McFarland J et al (2015) Generating site-specifically modified proteins via a versatile and stable nucleophilic carbon ligation. Chem Biol 22(2):293–298. https://doi.org/10.1016/j.chembiol.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  17. Beerli RR, Hell T, Merkel AS et al (2015) Sortase enzyme-mediated generation of site-specifically conjugated antibody drug conjugates with high in vitro and in vivo potency. PLoS One 10(7):e0131177. https://doi.org/10.1371/journal.pone.0131177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thompson P, Ezeadi E, Hutchinson I et al (2016) Straightforward glycoengineering approach to site-specific antibody-pyrrolobenzodiazepine conjugates. ACS Med Chem Lett 7(11):1005–1008. https://doi.org/10.1021/acsmedchemlett.6b00278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carter PJ, Lazar GA (2017) Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat Rev Drug Discov 17(3):197–223. https://doi.org/10.1038/nrd.2017.227

    Article  CAS  PubMed  Google Scholar 

  20. Junutula JR, Raab H, Clark S et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26(8):925–932. https://doi.org/10.1038/nbt.1480

    Article  CAS  PubMed  Google Scholar 

  21. Parsons TB, Struwe WB, Gault J et al (2016) Optimal synthetic glycosylation of a therapeutic antibody. Angew Chem Int Ed Engl 55(7):2361–2367. https://doi.org/10.1002/anie.201508723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang F, Yang Y, Tang Y et al (2016) One-pot N-glycosylation remodeling of IgG with non-natural sialylglycopeptides enables glycosite-specific and dual-payload antibody-drug conjugates. Org Biomol Chem 14(40):9501–9518. https://doi.org/10.1039/c6ob01751g

    Article  CAS  PubMed  Google Scholar 

  23. Tang F, Wang LX, Huang W (2017) Chemoenzymatic synthesis of glycoengineered IgG antibodies and glycosite-specific antibody-drug conjugates. Nat Protoc 12(8):1702–1721. https://doi.org/10.1038/nprot.2017.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang W, Giddens J, Fan SQ et al (2012) Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J Am Chem Soc 134(29):12308–12318. https://doi.org/10.1021/ja3051266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin CW, Tsai MH, Li ST et al (2015) A common glycan structure on immunoglobulin G for enhancement of effector functions. Proc Natl Acad Sci U S A 112(34):10611–10616. https://doi.org/10.1073/pnas.1513456112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goodfellow JJ, Baruah K, Yamamoto K et al (2012) An endoglycosidase with alternative glycan specificity allows broadened glycoprotein remodelling. J Am Chem Soc 134(19):8030–8033. https://doi.org/10.1021/ja301334b

    Article  CAS  PubMed  Google Scholar 

  27. Guo W, Tang F, Qin K et al (2017) Glycoengineering and glycosite-specific labeling of serum IgGs from various species. Carbohydr Res 446–447:32–39. https://doi.org/10.1016/j.carres.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  28. Tang Y, Tang F, Yang Y et al (2017) Real-time analysis on drug-antibody ratio of antibody-drug conjugates for synthesis, process optimization, and quality control. Sci Rep 7(1):7763. https://doi.org/10.1038/s41598-017-08151-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun B, Bao W, Tian X et al (2014) A simplified procedure for gram-scale production of sialylglycopeptide (SGP) from egg yolks and subsequent semi-synthesis of Man3GlcNAc oxazoline. Carbohydr Res 396:62–69. https://doi.org/10.1016/j.carres.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  30. Noguchi M, Fujieda T, Huang WC et al (2012) A practical one-step synthesis of 1,2-Oxazoline derivatives from unprotected sugars and its application to chemoenzymatic β-N-Acetylglucosaminidation of Disialo-oligosaccharide. Helv Chim Acta 95(10):1928–1936

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NNSFC, No. 21572244), the SIMM Institute Fund (CASIMM0120153004), and the “Personalized Medicines—Molecular Signature-based Drug Discovery and Development,” Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA12020311.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tang, F., Shi, W., Huang, W. (2019). Homogeneous Antibody–Drug Conjugates via Glycoengineering. In: Massa, S., Devoogdt, N. (eds) Bioconjugation. Methods in Molecular Biology, vol 2033. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9654-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9654-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9653-7

  • Online ISBN: 978-1-4939-9654-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics