Skip to main content

Application of Sub-2 Micron Particle Silica Hydride Derivatized with Vancomycin for Chiral Separations by Nano-Liquid Chromatography

  • Protocol
Chiral Separations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1985))

Abstract

1.8 μm Silica hydride particles have been derivatized with vancomycin and applied to the enantioseparation of some racemic herbicides and nonsteroidal anti-inflammatory drugs (NSAIDs) by nano-liquid chromatography. The chiral stationary phase (CSP) was packed for only 11 cm and the enantiomers were separated utilizing a laboratory-assembled instrumentation. The new CSP was very effective for the separation of the above mentioned acidic compounds, while poor resolutions were obtained for basic compounds. Mixtures of acetate buffer with methanol or acetonitrile allowed the chiral resolution of all compounds. Fast chiral separation of a NSAIDs-related compound can be achieved in less than 60 s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De-Miao C, Qiang F, Na L, Song-Xian Z, Qian-Qian Z (2007) Enantiomeric separation of naproxen by high performance liquid chromatography using CHIRALCEL OD as stationary phase. Chin J Anal Chem 35:75–78

    Article  Google Scholar 

  2. D’Orazio G, Fanali C, Asensio-Ramos M, Fanali S (2017) Chiral separations in food analysis. TrAC—Trends Anal Chem 96:151–171

    Article  Google Scholar 

  3. Armstrong DW, Tang YB, Chen SS et al (1994) Macrocyclic antibiotics as a new class of chiral selectors for liquid chromatography. Anal Chem 66:1473–1484

    Article  CAS  Google Scholar 

  4. Armstrong DW, Rundlett K, Reid GL III (1994) Use of a macrocyclic antibiotic, rifamycin b, and indirect detection for the resolution of racemic amino alcohols by CE. Anal Chem 66:1690–1695

    Article  CAS  Google Scholar 

  5. Ward TJ, Oswald TM (1997) Enantioselectivity in capillary electrophoresis using the macrocyclic antibiotics. J Chromatogr A 792:309–325

    Article  CAS  Google Scholar 

  6. Desiderio C, Fanali S (1998) Chiral analysis by capillary electrophoresis using antibiotics as chiral selector. J Chromatogr A 807:37–56

    Article  CAS  Google Scholar 

  7. Aboul-Enein HY, Ali I (2001) Macrocyclic antibiotics as effective chiral selectors for enantiomeric resolution by liquid chromatography and capillary electrophoresis. Chromatographia 52:679–691

    Article  Google Scholar 

  8. Tang A-N, Wang X-N, Ding G-S, Yan X-P (2009) On-line preconcentration and enantioseparation of thalidomide racemates by CEC with the hyphenation of octyl and norvancomycin monoliths. Electrophoresis 30:682–688

    Article  CAS  Google Scholar 

  9. D’Orazio G, Fanali S (2010) Coupling capillary electrochromatography with mass spectrometry by using a liquid-junction nano-spray interface. J Chromatogr A 1217:4079–4086

    Article  Google Scholar 

  10. Rocchi S, Fanali C, Fanali S (2015) Use of a novel sub-2 μm silica hydride vancomycin stationary phase in nano-liquid chromatography. II. Separation of derivatized amino acid enantiomers. Chirality 27:767–772

    Article  CAS  Google Scholar 

  11. Rocchi S, Rocco A, Pesek JJ, Matyska MT, Capitani D, Fanali S (2015) Enantiomers separation by nano-liquid chromatography: use of a novel sub-2μm vancomycin silica hydride stationary phase. J Chromatogr A 1381:149–159

    Article  CAS  Google Scholar 

  12. D’Orazio G, Cifuentes A, Fanali S (2008) Chiral nano-liquid chromatography-mass spectrometry applied to amino acids analysis for orange juice profiling. Food Chem 108:1114–1121

    Article  Google Scholar 

  13. D’Orazio G, Aturki Z, Cristalli M, Quaglia MG, Fanali S (2005) Use of vancomycin chiral stationary phase for the enantiomeric resolution of basic and acidic compounds by nano-liquid chromatography. J Chromatogr A 1081:105–113

    Article  Google Scholar 

  14. Armstrong DW, Rundlett KL, Chen J-R (1994) Evaluation of the macrocyclic antibiotic vancomycin as a chiral selector for capillary electrophoresis. Chirality 6:496–509

    Article  CAS  Google Scholar 

  15. Loukili B, Dufresne C, Jourdan E et al (2003) Study of tryptophan enantiomer binding to a teicoplanin-based stationary phase using the perturbation technique: investigation of the role of sodium perchlorate in solute retention and enantioselectivity. J Chromatogr A 986:45–53

    Article  CAS  Google Scholar 

  16. Fanali S, Desiderio C (1996) Use of vancomycin as chiral selector in capillary electrophoresis. Optimization and quantitation. J High Resolut Chromatogr 19:322–326

    Article  CAS  Google Scholar 

  17. Ward TJ, Dann C III, Brown AP (1996) Separation of enantiomers using vancomycin in a countercurrent process by suppression of electroosmosis. Chirality 8:77–83

    Article  CAS  Google Scholar 

  18. Desiderio C, Aturki Z, Fanali S (2001) Use of vancomycin silica stationary phase in packed capillary electrochromatography I. Enantiomer separation of basic compounds. Electrophoresis 22:535–543

    Article  CAS  Google Scholar 

  19. Fanali S, Rudaz S, Veuthey JL, Desiderio C (2001) Use of vancomycin silica stationary phase in packed capillary electrochromatography. II: Enantiomer separation of venlafaxine and O-desmethylvenlafaxine in human plasma. J Chromatogr A 919:195–203

    Article  CAS  Google Scholar 

  20. Kotoni D, Ciogli A, Molinaro C et al (2012) Introducing enantioselective ultrahigh-pressure liquid chromatography (eUHPLC): theoretical inspections and ultrafast separations on a new sub-2-mm Whelk-O1 stationary phase. Anal Chem 84:6805–6813

    Article  CAS  Google Scholar 

  21. Farooq Wahab M, Wimalasinghe RM, Wang Y et al (2016) Salient sub-second separations. Anal Chem 88:8821–8826

    Article  Google Scholar 

  22. D’Orazio G, Rocco A, Fanali S (2012) Fast-liquid chromatography using columns of different internal diameters packed with sub-2 μm silica particles. J Chromatogr A1228:213–220

    Article  Google Scholar 

  23. Chankvetadze B, Bergenthal D, Wennemer H. Vorrichtung zur Trennung von Substanzgemischen mittels Flüssigchromatographie. DE10260700. 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Fanali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Fanali, C., Fanali, S. (2019). Application of Sub-2 Micron Particle Silica Hydride Derivatized with Vancomycin for Chiral Separations by Nano-Liquid Chromatography. In: Scriba, G.K.E. (eds) Chiral Separations. Methods in Molecular Biology, vol 1985. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9438-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9438-0_13

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9437-3

  • Online ISBN: 978-1-4939-9438-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics