Skip to main content

A Close-Up View of the Impact of Arachidonic Acid on the Phagocyte NADPH Oxidase

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1982))

Abstract

The NADPH oxidase NOX2 complex consists of assembled cytosolic and redox membrane proteins. In mammalian cells, natural arachidonic acid (cis-AA), released by activated phospholipase-A2, plays an important role in the activation of the NADPH oxidase, but the mechanism of action of cis-AA is still a matter of debate. In cell-free systems, cis-AA is commonly used for activation although its structural effects are still unclear. Undoubtedly cis-AA participates in the synergistic multi-partner assembly that can be hardly studied at the molecular level in vivo due to cellular complexity. The capacity of this anionic amphiphilic fatty acid to activate the oxidase is mainly explained by its ability to disrupt intramolecular bonds, mimicking phosphorylation events in cell signaling and therefore allowing protein-protein interactions. Interestingly the geometric isomerism of the fatty acid and its purity are crucial for optimal superoxide production in cell-free assays. Indeed, optimal NADPH oxidase assembly was hampered by the substitution of the cis form by the trans forms of AA isomers (Souabni et al., BBA-Biomembranes 1818:2314–2324, 2012). Structural analysis of the changes induced by these two compounds, by circular dichroism and by biochemical methods, revealed differences in the interaction between subunits. We describe how the specific geometry of AA plays an important role in the activation of the NOX2 complex.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dagher MC, Pick E (2007) Opening the black box: lessons from cell-free systems on the phagocyte NADPH-oxidase. Biochimie 89:1123–1132

    Article  CAS  Google Scholar 

  2. Molshanski-Mor S, Mizrahi A, Ugolev Y, Dahan I, Berdichevsky Y, Pick E (2007) Cell-free assays: the reductionist approach to the study of NADPH oxidase assembly, or “all you wanted to know about cell-free assays but did not dare to ask”. Methods Mol Biol 412:385–428

    Article  CAS  Google Scholar 

  3. Pick E (2014) Cell-free NADPH oxidase activation assays: “in vitro veritas”. Humana Press, Totowa, NJ

    Google Scholar 

  4. Ostuni MA, Lamanuzzi LB, Bizouarn T, Dagher MC, Baciou L (2010) Expression of functional mammal flavocytochrome b(558) in yeast: comparison with improved insect cell system. Biochim Biophys Acta 1798:1179–1188

    Article  CAS  Google Scholar 

  5. Ezzine A, Souabni H, Bizouarn T, Baciou L (2014) Recombinant form of mammalian gp91(phox) is active in the absence of p220(phox). Biochem J 462:337–345

    Article  CAS  Google Scholar 

  6. Souabni H, Thoma V, Bizouarn T, Chatgilialoglu C, Siafaka-Kapadai A, Baciou L, Ferreri C, Houee-Levin C, Ostuni MA (2012) Trans Arachidonic acid isomers inhibit NADPH-oxidase activity by direct interaction with enzyme components. BBA-Biomembranes 1818:2314–2324

    Article  CAS  Google Scholar 

  7. Souabni H, Wien F, Bizouarn T, Houee-Levin C, Refregiers M, Baciou L (2017) The physicochemical properties of membranes correlate with the NADPH oxidase activity. Biochim Biophys Acta 1861:3520–3530

    Article  CAS  Google Scholar 

  8. Souabni H, Machillot P, Baciou L (2014) Contribution of lipid environment to NADPH oxidase activity: influence of sterol. Biochimie 107(Pt A):33–42

    Article  CAS  Google Scholar 

  9. Baciou L, Erard M, Dagher MC, Bizouarn T (2009) The cytosolic subunit p67phox of the NADPH-oxidase complex does not bind NADPH. FEBS Lett 583:3225–3229

    Article  CAS  Google Scholar 

  10. Leto TL, Adams AG, Demendez I (1994) Assembly of the phagocyte NADPH oxidase – binding of src homology-3 domains to proline-rich targets. Proc Natl Acad Sci U S A 91:10650–10654

    Article  CAS  Google Scholar 

  11. Lapouge K, Smith SJ, Groemping Y, Rittinger K (2002) Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox. J Biol Chem 277:10121–10128

    Article  CAS  Google Scholar 

  12. Iyer SS, Pearson DW, Nauseef WM, Clark RA (1994) Evidence for a readily dissociable complex of P47phox and P67phox in cytosol of unstimulated human neutrophils. J Biol Chem 269:22405–22411

    CAS  PubMed  Google Scholar 

  13. Lee JH, Lee KS, Chung T, Park J (2000) C-terminal region of the cytosolic subunit p47(phox) is a primary target of conformational change during the activation of leukocyte NADPH oxidase. Biochimie 82:727–732

    Article  CAS  Google Scholar 

  14. Hata K, Ito T, Takeshige K, Sumimoto H (1998) Anionic amphiphile-independent activation of the phagocyte NADPH oxidase in a cell-free system by p47phox and p67phox, both in C terminally truncated forms. Implication for regulatory Src homology 3 domain-mediated interactions. J Biol Chem 273:4232–4236

    Article  CAS  Google Scholar 

  15. Karimi G, Levin CH, Dagher MC, Baciou L, Bizouarn T (2014) Assembly of phagocyte NADPH oxidase: a concerted binding process? BBA-Gen Subjects 1840:3277–3283

    Article  CAS  Google Scholar 

  16. Swain SD, Helgerson SL, Davis AR, Nelson LK, Quinn MT (1997) Analysis of activation-induced conformational changes in p47(phox) using tryptophan fluorescence spectroscopy. J Biol Chem 272:29502–29510

    Article  CAS  Google Scholar 

  17. Park HS, Park JW (1998) Fluorescent labeling of the leukocyte NADPH oxidase subunit p47(phox): evidence for amphiphile-induced conformational changes. Arch Biochem Biophys 360:165–172

    Article  CAS  Google Scholar 

  18. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113:343–355

    Article  CAS  Google Scholar 

  19. Shiose A, Sumimoto H (2000) Arachidonic acid and phosphorylation synergistically induce a conformational change of p47(phox) to activate the phagocyte NADPH oxidase. J Biol Chem 275:13793–13801

    Article  CAS  Google Scholar 

  20. Matono R, Miyano K, Kiyohara T, Sumimoto H (2014) Arachidonic acid induces direct interaction of the p67(phox)-rac complex with the phagocyte oxidase Nox2, leading to superoxide production. J Biol Chem 289:24874–24884

    Article  CAS  Google Scholar 

  21. Doussiere J, Gaillard J, Vignais PV (1996) Electron transfer across the O-2(−) generating flavocytochrome b of neutrophils. Evidence for a transition from a low-spin state to a high-spin state of the heme iron component. Biochemistry 35:13400–13410

    Article  CAS  Google Scholar 

  22. Bizouarn T, Karimi G, Masoud R, Souabni H, Machillot P, Serfaty X, Wien F, Refregiers M, Houee-Levin C, Baciou L (2016) Exploring the arachidonic acid-induced structural changes in phagocyte NADPH oxidase p47(phox) and p67(phox) via thiol accessibility and SRCD spectroscopy. FEBS J 283:2896–2910

    Article  CAS  Google Scholar 

  23. Nauseef WM (2007) Isolation of human neutrophils from venous blood. Methods Mol Biol 412:15–20

    Article  Google Scholar 

  24. van GB, Slater EC (1962) The extinction coefficient of cytochrome c. Biochim Biophys Acta 58:593–595

    Article  Google Scholar 

  25. Chatgilialoglu C, Ferreri C (2005) Trans lipids: the free radical path. Acc Chem Res 38:441–448

    Article  CAS  Google Scholar 

  26. Ferreri C, Chatgilialoglu C (2005) Geometrical trans lipid isomers: a new target for lipidomics. Chembiochem 6:1722–1734

    Article  CAS  Google Scholar 

  27. Anagnostopoulos D, Chatgilialoglu C, Ferreri C, Samadi A, Siafaka-Kapadai A (2005) Synthesis of all-trans arachidonic acid and its effect on rabbit platelet aggregation. Bioorg Med Chem Lett 15:2766–2770

    Article  CAS  Google Scholar 

  28. Ellman GL (1958) A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys 74:443–450

    Article  CAS  Google Scholar 

  29. Refregiers M, Wien F, Ta HP, Premvardhan L, Bac S, Jamme F, Rouam V, Lagarde B, Polack F, Giorgetta JL, Ricaud JP, Bordessoule M, Giuliani A (2012) DISCO synchrotron-radiation circular-dichroism endstation at SOLEIL. J Synchrotron Radiat 19:831–835

    Article  CAS  Google Scholar 

  30. Souabni H, Ezzine A, Bizouarn T, Baciou L (2017) Functional assembly of soluble and membrane recombinant proteins of mammalian NADPH oxidase complex. Methods Mol Biol 1635:27–43

    Article  CAS  Google Scholar 

  31. Light DR, Walsh C, O'Callagahn A, Goetzl E, Tauber A (1981) Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of human polymorphonuclear leukocytes. Biochemistry 17:1468–1476

    Article  Google Scholar 

  32. Curnutte JT (1985) Activation of human neutrophil nicotinamide adenine-dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic-acid in a cell-free system. J Clin Investig 75:1740–1743

    Article  CAS  Google Scholar 

  33. Clark RA, Leidal KG, Pearson DW, Nauseef WM (1987) NADPH oxidase of human-neutrophils – subcellular-localization and characterization of an arachidonate-activatable superoxide-generating system. J Biol Chem 262:4065–4074

    CAS  PubMed  Google Scholar 

  34. Ligeti E, Pizon V, Wittinghofer A, Gierschik P, Jakobs KH (1993) Gtpase activity of small Gtp-binding proteins in Hl-60 membranes is stimulated by arachidonic-acid. Eur J Biochem 216:813–820

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors want to acknowledge Drs. M. Réfrégiers and F. Wien for SRCD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Baciou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bizouarn, T. et al. (2019). A Close-Up View of the Impact of Arachidonic Acid on the Phagocyte NADPH Oxidase. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics