Skip to main content

Neutrophil Extracellular Traps

  • Protocol
  • First Online:
NADPH Oxidases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1982))

Abstract

Neutrophil extracellular traps (NETs) are made of a network of extracellular strings of DNA that bind pathogenic microbes. Histones and several neutrophil granule proteins associated with the DNA framework damage entrapped microorganisms. Reactive oxygen species generated by the neutrophil NADPH oxidase have been shown to be essential to mediate NET release by several stimuli including numerous pathogenic bacteria. Although several methods have been used in the literature to detect NETs in vitro and in vivo, a consensus is urgently needed on the field to standardize the best NET-specific assays. In this chapter, two methods are described in details that can be used to detect NETs and to distinguish them from other mechanisms of neutrophil cell death. While NET-specific, these assays are also relatively simple and straightforward enabling their potential use by a wide audience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. https://doi.org/10.1126/science.1092385

    Article  CAS  PubMed  Google Scholar 

  2. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241. https://doi.org/10.1083/jcb.200606027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469. https://doi.org/10.1038/nm1565

    Article  CAS  PubMed  Google Scholar 

  4. Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, Robbins SM, Green FH, Surette MG, Sugai M, Bowden MG, Hussain M, Zhang K, Kubes P (2010) A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 185(12):7413–7425. https://doi.org/10.4049/jimmunol.1000675

    Article  CAS  PubMed  Google Scholar 

  5. Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, Pittman K, Asaduzzaman M, Wu K, Meijndert HC, Malawista SE, de Boisfleury Chevance A, Zhang K, Conly J, Kubes P (2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 18(9):1386–1393. https://doi.org/10.1038/nm.2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 16(11):1438–1444. https://doi.org/10.1038/cdd.2009.96

    Article  CAS  PubMed  Google Scholar 

  7. Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, Grone HJ, Brinkmann V, Jenne DE (2009) Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 15(6):623–625. https://doi.org/10.1038/nm.1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leffler J, Gullstrand B, Jonsen A, Nilsson JA, Martin M, Blom AM, Bengtsson AA (2013) Degradation of neutrophil extracellular traps co-varies with disease activity in patients with systemic lupus erythematosus. Arthritis Res Ther 15(4):R84. https://doi.org/10.1186/ar4264

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marciano BE, Uzel G, DeRavin SS, Priel DA, Soule BP, Zarember KA, Malech HL, Holland SM, Gallin JI (2010) Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med 363(27):2600–2610. https://doi.org/10.1056/NEJMoa1007097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA, Zychlinsky A, Reichenbach J (2009) Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114(13):2619–2622. https://doi.org/10.1182/blood-2009-05-221606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Almyroudis NG, Grimm MJ, Davidson BA, Rohm M, Urban CF, Segal BH (2013) NETosis and NADPH oxidase: at the intersection of host defense, inflammation, and injury. Front Immunol 4:45. https://doi.org/10.3389/fimmu.2013.00045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rada B (2017) Neutrophil extracellular traps and microcrystals. J Immunol Res 2017:2896380. https://doi.org/10.1155/2017/2896380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoo DG, Winn M, Pang L, Moskowitz SM, Malech HL, Leto TL, Rada B (2014) Release of cystic fibrosis airway inflammatory markers from Pseudomonas aeruginosa-stimulated human neutrophils involves NADPH oxidase-dependent extracellular DNA trap formation. J Immunol 192(10):4728–4738. https://doi.org/10.4049/jimmunol.1301589

    Article  CAS  PubMed  Google Scholar 

  14. Rada B, Leto TL (2008) Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol 15:164–187. https://doi.org/10.1159/000136357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, Hayama R, Leonelli L, Han H, Grigoryev SA, Allis CD, Coonrod SA (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184(2):205–213. https://doi.org/10.1083/jcb.200806072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207(9):1853–1862. https://doi.org/10.1084/jem.20100239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gupta S, Chan DW, Zaal KJ, Kaplan MJ (2018) A high-throughput real-time imaging technique to quantify NETosis and distinguish mechanisms of cell death in human neutrophils. J Immunol 200(2):869–879. https://doi.org/10.4049/jimmunol.1700905

    Article  CAS  PubMed  Google Scholar 

  18. Kraaij T, Tengstrom FC, Kamerling SW, Pusey CD, Scherer HU, Toes RE, Rabelink TJ, van Kooten C, Teng YK (2016) A novel method for high-throughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes. Autoimmun Rev 15(6):577–584. https://doi.org/10.1016/j.autrev.2016.02.018

    Article  CAS  PubMed  Google Scholar 

  19. Brinkmann V, Goosmann C, Kuhn LI, Zychlinsky A (2012) Automatic quantification of in vitro NET formation. Front Immunol 3:413. https://doi.org/10.3389/fimmu.2012.00413

    Article  PubMed  Google Scholar 

  20. Masuda S, Shimizu S, Matsuo J, Nishibata Y, Kusunoki Y, Hattanda F, Shida H, Nakazawa D, Tomaru U, Atsumi T, Ishizu A (2017) Measurement of NET formation in vitro and in vivo by flow cytometry. Cytometry A 91(8):822–829. https://doi.org/10.1002/cyto.a.23169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao W, Fogg DK, Kaplan MJ (2015) A novel image-based quantitative method for the characterization of NETosis. J Immunol Methods 423:104–110. https://doi.org/10.1016/j.jim.2015.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoo DG, Floyd M, Winn M, Moskowitz SM, Rada B (2014) NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes. Immunol Lett 160(2):186–194. https://doi.org/10.1016/j.imlet.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  23. Sil P, Yoo DG, Floyd M, Gingerich A, Rada B (2016) High throughput measurement of extracellular DNA Release and quantitative NET formation in human neutrophils in vitro. J Vis Exp (112). https://doi.org/10.3791/52779

  24. Brinkmann V, Laube B, Abu Abed U, Goosmann C, Zychlinsky A (2010) Neutrophil extracellular traps: how to generate and visualize them. J Vis Exp (36). https://doi.org/10.3791/1724

Download references

Acknowledgments

This work was supported by the NIH grant 1 R01 HL136707-01A1 awarded to B. Rada. I thank previous graduate students Dae-goon Yoo, Madison Floyd, and Payel Sil, for taking the immunofluorescence images presented here and for optimizing and recording detailed protocols that helped writing the “Notes” section of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Rada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rada, B. (2019). Neutrophil Extracellular Traps. In: Knaus, U., Leto, T. (eds) NADPH Oxidases. Methods in Molecular Biology, vol 1982. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9424-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9424-3_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9423-6

  • Online ISBN: 978-1-4939-9424-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics