Skip to main content

Improving miRNA Target Prediction Using CLASH Data

  • Protocol
  • First Online:
Book cover MicroRNA Target Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1970))

Abstract

In this chapter, we present a computational method, TarPmiR, for miRNA target prediction. TarPmiR is based on emerging features of miRNA–target interactions learned from CLASH (crosslinking, ligation and sequencing of hybrids) data. First, we introduce miRNA target prediction, delineate existing methods for miRNA target prediction, and discuss their usage and limitations. Next, we describe available CLASH data, the learning of new miRNA binding features from CLASH data, and the usage of CLASH features in miRNA target prediction. Finally, we detail the computational pipeline of TarPmiR, discuss its performance compared with existing computational methods for miRNA target prediction, and present its installation and usage for miRNA target prediction. This chapter will facilitate the common understanding of CLASH data, new characteristics of miRNA–target interactions, and the use of the CLASH based miRNA target prediction tool TarPmiR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  2. Agarwal V, Bell GW, Nam JW et al (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4

    Google Scholar 

  3. Kuhn DE, Martin MM, Feldman DS et al (2008) Experimental validation of miRNA targets. Methods 44:47–54

    Article  CAS  Google Scholar 

  4. Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39:6845–6853

    Article  CAS  Google Scholar 

  5. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  Google Scholar 

  6. Helwak A, Kudla G, Dudnakova T et al (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665

    Article  CAS  Google Scholar 

  7. Moore MJ, Scheel TK, Luna JM et al (2015) miRNA-target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity. Nat Commun 6:8864

    Article  CAS  Google Scholar 

  8. Chi SW, Zang JB, Mele A et al (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486

    Article  CAS  Google Scholar 

  9. Ding J, Li X, Hu H (2016) TarPmiR: a new approach for microRNA target site prediction. Bioinformatics 32(18):2768–2775

    Article  CAS  Google Scholar 

  10. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  Google Scholar 

  11. Lewis BP, Shih I-H, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  Google Scholar 

  12. Ule J, Jensen KB, Ruggiu M et al (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215

    Article  CAS  Google Scholar 

  13. Vejnar CE, Zdobnov EM (2012) MiRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Res 40:11673–11683

    Article  CAS  Google Scholar 

  14. Enright AJ, John B, Gaul U et al (2004) MicroRNA targets in drosophila. Genome Biol 5:R1–R1

    Article  Google Scholar 

  15. Paraskevopoulou MD, Georgakilas G, Kostoulas N et al (2013) DIANA-microT web server v5. 0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173

    Article  Google Scholar 

  16. Loher P, Rigoutsos I (2012) Interactive exploration of RNA22 microRNA target predictions. Bioinformatics 28:3322–3323

    Article  CAS  Google Scholar 

  17. Friedman RC, Farh KK-H, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  CAS  Google Scholar 

  18. Wang X (2010) Computational prediction of microRNA targets. Methods Mol Biol 667:283–295

    Article  CAS  Google Scholar 

  19. Ding J, Li X, Hu H (2014) MicroRNA modules prefer to bind weak and unconventional target sites. Bioinformatics. btu833

    Google Scholar 

  20. Wang XW (2014) Composition of seed sequence is a major determinant of microRNA targeting patterns. Bioinformatics 30:1377–1383

    Article  CAS  Google Scholar 

  21. Kishore S, Jaskiewicz L, Burger L et al (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods 8:559–564

    Article  CAS  Google Scholar 

  22. Vlachos IS, Paraskevopoulou MD, Karagkouni D et al (2015) DIANA-TarBase v7. 0: indexing more than half a million experimentally supported miRNA: mRNA interactions. Nucleic Acids Res 43:D153–D159

    Article  CAS  Google Scholar 

  23. Wang Y, Li X, Hu H (2011) Transcriptional regulation of co-expressed microRNA target genes. Genomics 98:445–452

    Article  CAS  Google Scholar 

  24. Ding J, Li X, Hu H (2017) CCmiR: a computational approach for competitive and cooperative microRNA binding prediction. Bioinformatics

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, X., Hu, H. (2019). Improving miRNA Target Prediction Using CLASH Data. In: Laganà, A. (eds) MicroRNA Target Identification. Methods in Molecular Biology, vol 1970. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9207-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9207-2_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9206-5

  • Online ISBN: 978-1-4939-9207-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics