Skip to main content

Analysis of Isothermal Titration Calorimetry Data for Complex Interactions Using I2CITC

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1964))

Abstract

I2CITC allows the analysis of isothermal titration calorimetry (ITC) data for complex coupled equilibria. Here we describe how, using I2CITC, ITC data for systems involving a self-aggregating ligand and a host offering one or two binding sites can be analyzed, how interaction models can be tested, and how confidence intervals for the optimized parameters can be determined.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wiseman T, Williston S, Brandts JF, Lin LN (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179:131–137

    Article  CAS  Google Scholar 

  2. Jelesarov I, Crane-Robinson C, Privalov PL (1999) The energetics of HMG box interactions with DNA: thermodynamic description of the target DNA duplexes. J Mol Biol 294:981–995

    Article  CAS  Google Scholar 

  3. Ward WHJ, Holdgate GA (2001) Isothermal titration calorimetry in drug discovery. Prog Med Chem 38:309–376

    Article  CAS  Google Scholar 

  4. Jelesarov I, Bosshard HR (1999) Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit 12:3–18

    Article  CAS  Google Scholar 

  5. O'Brien R, Haq I (2004) Applications of biocalorimetry: binding, stability and enzyme kinetics. In: Biocalorimetry 2: applications of calorimetry in the biological sciences. Wiley & Sons, Hoboken, NJ

    Google Scholar 

  6. Leavitt S, Freire E (2001) Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr Opin Struct Biol 11:560–566

    Article  CAS  Google Scholar 

  7. Pierce MM, Raman CS, Nall BT (1999) Isothermal titration calorimetry of protein-protein interactions. Methods 19:213–221

    Article  CAS  Google Scholar 

  8. Ladbury JE, Chowdhry BZ (1996) Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem Biol 3:791–801

    Article  CAS  Google Scholar 

  9. Chaires JB (2008) Calorimetry and thermodynamics in drug design. Annu Rev Biophys 37:135–151

    Article  CAS  Google Scholar 

  10. Cooper A, Johnson CM (1994) Isothermal titration microcalorimetry. Methods Mol Biol 22:137–150

    CAS  PubMed  Google Scholar 

  11. www.affinimeter.com, Accessed July 2017

  12. Buurma NJ, Haq I (2008) Calorimetric and spectroscopic studies of Hoechst 33258: self-association and binding to non-cognate DNA. J Mol Biol 381:607–621

    Article  CAS  Google Scholar 

  13. Buurma NJ, Haq I (2007) Advances in the analysis of isothermal titration calorimetry data for ligand-DNA interactions. Methods 42:162–172

    Article  CAS  Google Scholar 

  14. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  CAS  Google Scholar 

  15. Bevington PR, Robinson DK (2003) Data reduction and error analysis for the physical sciences, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  16. Berendsen HJC (2011) A student's guide to data and error analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  17. Hahn L, Buurma NJ, Gade LH (2016) A water-soluble tetraazaperopyrene dye as strong G-quadruplex DNA binder. Chem Eur J 22:6314–6322

    Article  CAS  Google Scholar 

  18. Saeed HK, Saeed IQ, Buurma NJ, Thomas JA (2017) Chem Eur J 23:5467–5477

    Article  CAS  Google Scholar 

  19. Cao T, Zhang FT, Cai LY, Zhou YL, Buurma NJ, Zhang XX (2017) Investigation of the interactions between methylene blue and intramolecular G-quadruplexes: an explicit distinction in electrochemical behavior. Analyst 142:987–993

    Article  CAS  Google Scholar 

  20. Wheelhouse RT, Garbett NC, Buurma NJ, Chaires JB (2010) Probing the molecular recognition of a DNA.RNA hybrid duplex. Angew Chem Int Ed 49:3207–3210

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Users of ICITC and I2CITC, past and present, are thanked for their feedback and questions which have contributed to the improvement of the software over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklaas J. Buurma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saeed, I.Q., Buurma, N.J. (2019). Analysis of Isothermal Titration Calorimetry Data for Complex Interactions Using I2CITC. In: Ennifar, E. (eds) Microcalorimetry of Biological Molecules. Methods in Molecular Biology, vol 1964. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9179-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9179-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9178-5

  • Online ISBN: 978-1-4939-9179-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics