Skip to main content

Isolation and Phenotypic Characterization of Inflammatory Cells from Clinical Samples: Purification of Macrophages from Trypanosoma cruzi-Infected Hearts

  • Protocol
  • First Online:
T. cruzi Infection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1955))

Abstract

Trypanosoma cruzi, the causal agent of chronic Chagas cardiomyopathy, exhibits an important tropism for cardiac tissue. In consequence, T. cruzi experimental infection represents a unique model to study cardiac macrophage behavior and effector functions during either acute or chronic immune response. In this chapter we describe a protocol to isolate immune cells from T. cruzi-infected murine cardiac tissue and to determine the percentage, absolute number, phenotype, and functionality of monocytes and macrophages by using flow cytometry. Moreover, we describe the parameters to discriminate between resident and infiltrating mononuclear phagocytic cells within infected hearts. The investigations in this field will provide mechanistic insights about the roles of these innate immune cells in the context of a clinically relevant target tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gutierrez FR, Guedes PM, Gazzinelli RT, Silva JS (2009) The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunol 31(11):673–685. https://doi.org/10.1111/j.1365-3024.2009.01108.x

    Article  CAS  PubMed  Google Scholar 

  2. Marin-Neto JA, Cunha-Neto E, Maciel BC, Simoes MV (2007) Pathogenesis of chronic Chagas heart disease. Circulation 115(9):1109–1123. https://doi.org/10.1161/CIRCULATIONAHA.106.624296

    Article  PubMed  Google Scholar 

  3. Rassi A Jr, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375(9723):1388–1402. S0140-6736(10)60061-X. https://doi.org/10.1016/S0140-6736(10)60061-X

    Article  PubMed  Google Scholar 

  4. Yu YR, O’Koren EG, Hotten DF, Kan MJ, Kopin D, Nelson ER, Que L, Gunn MD (2016) A protocol for the comprehensive flow cytometric analysis of immune cells in normal and inflamed murine non-lymphoid tissues. PLoS One 11(3):e0150606. https://doi.org/10.1371/journal.pone.0150606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Epelman S, Liu PP, Mann DL (2015) Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol 15(2):117–129. https://doi.org/10.1038/nri3800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Honold L, Nahrendorf M (2018) Resident and monocyte-derived macrophages in cardiovascular disease. Circ Res 122(1):113–127. https://doi.org/10.1161/CIRCRESAHA.117.311071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davies LC, Jenkins SJ, Allen JE, Taylor PR (2013) Tissue-resident macrophages. Nat Immunol 14(10):986–995. https://doi.org/10.1038/ni.2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ponce NE, Sanmarco LM, Eberhardt N, Garcia MC, Rivarola HW, Cano RC, Aoki MP (2016) CD73 inhibition shifts cardiac macrophage polarization toward a microbicidal phenotype and ameliorates the outcome of experimental Chagas cardiomyopathy. J Immunol 197(3):814–823. https://doi.org/10.4049/jimmunol.1600371

    Article  CAS  PubMed  Google Scholar 

  9. Sanmarco LM, Ponce NE, Visconti LM, Eberhardt N, Theumer MG, Minguez AR, Aoki MP (2017) IL-6 promotes M2 macrophage polarization by modulating purinergic signaling and regulates the lethal release of nitric oxide during Trypanosoma cruzi infection. Biochim Biophys Acta 1863(4):857–869. https://doi.org/10.1016/j.bbadis.2017.01.006

    Article  CAS  Google Scholar 

  10. Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado Jde D, Popovich PG, Partida-Sanchez S, Guerau-de-Arellano M (2015) Novel markers to delineate murine M1 and M2 macrophages. PLoS One 10(12):e0145342. https://doi.org/10.1371/journal.pone.0145342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanmarco LM, Eberhardt N, Ponce NE, Cano RC, Bonacci G, Aoki MP (2017) New insights into the immunobiology of mononuclear phagocytic cells and their relevance to the pathogenesis of cardiovascular diseases. Front Immunol 8:1921. https://doi.org/10.3389/fimmu.2017.01921

    Article  CAS  PubMed  Google Scholar 

  12. Cabalen ME, Cabral MF, Sanmarco LM, Andrada MC, Onofrio LI, Ponce NE, Aoki MP, Gea S, Cano RC (2016) Chronic Trypanosoma cruzi infection potentiates adipose tissue macrophage polarization toward an anti-inflammatory M2 phenotype and contributes to diabetes progression in a diet-induced obesity model. Oncotarget 7(12):13400–13415. https://doi.org/10.18632/oncotarget.7630

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mills CD (2012) M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol 32(6):463–488

    Article  CAS  PubMed  Google Scholar 

  14. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. https://doi.org/10.1038/nri2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rath M, Muller I, Kropf P, Closs EI, Munder M (2014) Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages. Front Immunol 5:532. https://doi.org/10.3389/fimmu.2014.00532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lamoreaux L, Roederer M, Koup R (2006) Intracellular cytokine optimization and standard operating procedure. Nat Protoc 1(3):1507–1516. https://doi.org/10.1038/nprot.2006.268

    Article  CAS  PubMed  Google Scholar 

  17. Davies R, Vogelsang P, Jonsson R, Appel S (2016) An optimized multiplex flow cytometry protocol for the analysis of intracellular signaling in peripheral blood mononuclear cells. J Immunol Methods 436:58–63. https://doi.org/10.1016/j.jim.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  18. Foster B, Prussin C, Liu F, Whitmire JK, Whitton JL (2007) Detection of intracellular cytokines by flow cytometry. Curr Protoc Immunol. Chapter 6:Unit 6 24. https://doi.org/10.1002/0471142735.im0624s78

  19. McLarty JL, Melendez GC, Spencer WJ, Levick SP, Brower GL, Janicki JS (2011) Isolation of functional cardiac immune cells. J Vis Exp 58. https://doi.org/10.3791/3020

  20. Roederer M (2002) Compensation in flow cytometry. Curr Protoc Cytom. Chapter 1:Unit 1 14. https://doi.org/10.1002/0471142956.cy0114s22

  21. Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45(3):194–205

    Article  CAS  PubMed  Google Scholar 

  22. Szaloki G, Goda K (2015) Compensation in multicolor flow cytometry. Cytometry A 87(11):982–985. https://doi.org/10.1002/cyto.a.22736

    Article  PubMed  Google Scholar 

  23. van Rodijnen NM, Pieters M, Hoop S, Nap M (2011) Data-driven compensation for flow cytometry of solid tissues. Adv Bioinforma 2011:184731. https://doi.org/10.1155/2011/184731

    Article  CAS  Google Scholar 

  24. Cossarizza A, Chang HD, Radbruch A, Akdis M, Andra I, Annunziato F, Bacher P, Barnaba V, Battistini L, Bauer WM, Baumgart S, Becher B, Beisker W, Berek C, Blanco A, Borsellino G, Boulais PE, Brinkman RR, Buscher M, Busch DH, Bushnell TP, Cao X, Cavani A, Chattopadhyay PK, Cheng Q, Chow S, Clerici M, Cooke A, Cosma A, Cosmi L, Cumano A, Dang VD, Davies D, De Biasi S, Del Zotto G, Della Bella S, Dellabona P, Deniz G, Dessing M, Diefenbach A, Di Santo J, Dieli F, Dolf A, Donnenberg VS, Dorner T, Ehrhardt GRA, Endl E, Engel P, Engelhardt B, Esser C, Everts B, Dreher A, Falk CS, Fehniger TA, Filby A, Fillatreau S, Follo M, Forster I, Foster J, Foulds GA, Frenette PS, Galbraith D, Garbi N, Garcia-Godoy MD, Geginat J, Ghoreschi K, Gibellini L, Goettlinger C, Goodyear CS, Gori A, Grogan J, Gross M, Grutzkau A, Grummitt D, Hahn J, Hammer Q, Hauser AE, Haviland DL, Hedley D, Herrera G, Herrmann M, Hiepe F, Holland T, Hombrink P, Houston JP, Hoyer BF, Huang B, Hunter CA, Iannone A, Jack HM, Javega B, Jonjic S, Juelke K, Jung S, Kaiser T, Kalina T, Keller B, Khan S, Kienhofer D, Kroneis T, Kunkel D, Kurts C, Kvistborg P, Lannigan J, Lantz O, Larbi A, LeibundGut-Landmann S, Leipold MD, Levings MK, Litwin V, Liu Y, Lohoff M, Lombardi G, Lopez L, Lovett-Racke A, Lubberts E, Ludewig B, Lugli E, Maecker HT, Martrus G, Matarese G, Maueroder C, McGrath M, McInnes I, Mei HE, Melchers F, Melzer S, Mielenz D, Mills K, Mirrer D, Mjosberg J, Moore J, Moran B, Moretta A, Moretta L, Mosmann TR, Muller S, Muller W, Munz C, Multhoff G, Munoz LE, Murphy KM, Nakayama T, Nasi M, Neudorfl C, Nolan J, Nourshargh S, O’Connor JE, Ouyang W, Oxenius A, Palankar R, Panse I, Peterson P, Peth C, Petriz J, Philips D, Pickl W, Piconese S, Pinti M, Pockley AG, Podolska MJ, Pucillo C, Quataert SA, Radstake T, Rajwa B, Rebhahn JA, Recktenwald D, Remmerswaal EBM, Rezvani K, Rico LG, Robinson JP, Romagnani C, Rubartelli A, Ruckert B, Ruland J, Sakaguchi S, Sala-de-Oyanguren F, Samstag Y, Sanderson S, Sawitzki B, Scheffold A, Schiemann M, Schildberg F, Schimisky E, Schmid SA, Schmitt S, Schober K, Schuler T, Schulz AR, Schumacher T, Scotta C, Shankey TV, Shemer A, Simon AK, Spidlen J, Stall AM, Stark R, Stehle C, Stein M, Steinmetz T, Stockinger H, Takahama Y, Tarnok A, Tian Z, Toldi G, Tornack J, Traggiai E, Trotter J, Ulrich H, van der Braber M, van Lier RAW, Veldhoen M, Vento-Asturias S, Vieira P, Voehringer D, Volk HD, von Volkmann K, Waisman A, Walker R, Ward MD, Warnatz K, Warth S, Watson JV, Watzl C, Wegener L, Wiedemann A, Wienands J, Willimsky G, Wing J, Wurst P, Yu L, Yue A, Zhang Q, Zhao Y, Ziegler S, Zimmermann J (2017) Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol 47(10):1584–1797. https://doi.org/10.1002/eji.201646632

    Article  CAS  PubMed  Google Scholar 

  25. Anderson KG, Mayer-Barber K, Sung H, Beura L, James BR, Taylor JJ, Qunaj L, Griffith TS, Vezys V, Barber DL, Masopust D (2014) Intravascular staining for discrimination of vascular and tissue leukocytes. Nat Protoc 9(1):209–222. https://doi.org/10.1038/nprot.2014.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Pilar Aoki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Eberhardt, N., Sanmarco, L.M., Aoki, M.P. (2019). Isolation and Phenotypic Characterization of Inflammatory Cells from Clinical Samples: Purification of Macrophages from Trypanosoma cruzi-Infected Hearts. In: Gómez, K., Buscaglia, C. (eds) T. cruzi Infection. Methods in Molecular Biology, vol 1955. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9148-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9148-8_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9147-1

  • Online ISBN: 978-1-4939-9148-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics